{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:34:08Z","timestamp":1726187648947},"publisher-location":"Cham","reference-count":14,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031253119"},{"type":"electronic","value":"9783031253126"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-25312-6_70","type":"book-chapter","created":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T18:47:24Z","timestamp":1675968444000},"page":"594-602","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Optimising Manufacturing Process with\u00a0Bayesian Structure Learning and\u00a0Knowledge Graphs"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3905-7878","authenticated-orcid":false,"given":"Tek Raj","family":"Chhetri","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0511-095X","authenticated-orcid":false,"given":"Sareh","family":"Aghaei","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1391-7104","authenticated-orcid":false,"given":"Anna","family":"Fensel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4795-4798","authenticated-orcid":false,"given":"Ulrich","family":"G\u00f6hner","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2899-410X","authenticated-orcid":false,"given":"Sebnem","family":"G\u00fcl-Ficici","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5730-7965","authenticated-orcid":false,"given":"Jorge","family":"Martinez-Gil","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,10]]},"reference":[{"key":"70_CR1","doi-asserted-by":"publisher","unstructured":"Arias, R.: Data for: Root cause analysis improved with machine learning for failure analysis in power transformers (2020). https:\/\/doi.org\/10.17632\/RZ75W3FKXY.1","DOI":"10.17632\/RZ75W3FKXY.1"},{"key":"70_CR2","unstructured":"Beaumont, P., et al.: CausalNex (2021). https:\/\/github.com\/quantumblacklabs\/causalnex. Last Accessed 25 Apr 2022"},{"key":"70_CR3","doi-asserted-by":"publisher","unstructured":"Cao, S., Bryceson, K., Hine, D.: An ontology-based bayesian network modelling for supply chain risk propagation. Indus. Manage. Data Syst. 119(8), 1691\u20131711 (2019). https:\/\/doi.org\/10.1108\/IMDS-01-2019-0032","DOI":"10.1108\/IMDS-01-2019-0032"},{"issue":"3","key":"70_CR4","doi-asserted-by":"publisher","first-page":"6032","DOI":"10.1109\/LRA.2021.3090020","volume":"6","author":"R Chen","year":"2021","unstructured":"Chen, R., Lu, Y., Witherell, P., Simpson, T.W., Kumara, S., Yang, H.: Ontology-driven learning of bayesian network for causal inference and quality assurance in additive manufacturing. IEEE Robot. Autom. Lett. 6(3), 6032\u20136038 (2021). https:\/\/doi.org\/10.1109\/LRA.2021.3090020","journal-title":"IEEE Robot. Autom. Lett."},{"key":"70_CR5","doi-asserted-by":"publisher","unstructured":"Chhetri, T.R., Kurteva, A., Adigun, J.G., Fensel, A.: Knowledge graph based hard drive failure prediction. Sensors 22(3) (2022). https:\/\/doi.org\/10.3390\/s22030985","DOI":"10.3390\/s22030985"},{"key":"70_CR6","doi-asserted-by":"publisher","unstructured":"Heckerman, D.: A tutorial on learning with bayesian networks (2020). https:\/\/doi.org\/10.48550\/ARXIV.2002.00269","DOI":"10.48550\/ARXIV.2002.00269"},{"issue":"14","key":"70_CR7","doi-asserted-by":"publisher","first-page":"4849","DOI":"10.1080\/00207543.2017.1407883","volume":"56","author":"S Kang","year":"2018","unstructured":"Kang, S., Kim, E., Shim, J., Chang, W., Cho, S.: Product failure prediction with missing data. Int. J. Prod. Res. 56(14), 4849\u20134859 (2018)","journal-title":"Int. J. Prod. Res."},{"key":"70_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.117398","volume":"202","author":"Z Kang","year":"2022","unstructured":"Kang, Z., Catal, C., Tekinerdogan, B.: Product failure detection for production lines using a data-driven model. Expert Syst. Appl. 202, 117398 (2022). https:\/\/doi.org\/10.1016\/j.eswa.2022.117398","journal-title":"Expert Syst. Appl."},{"key":"70_CR9","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.artmed.2017.07.002","volume":"80","author":"JB Lamy","year":"2017","unstructured":"Lamy, J.B.: Owlready: ontology-oriented programming in python with automatic classification and high level constructs for biomedical ontologies. Artif. Intell. Med. 80, 11\u201328 (2017). https:\/\/doi.org\/10.1016\/j.artmed.2017.07.002","journal-title":"Artif. Intell. Med."},{"key":"70_CR10","doi-asserted-by":"crossref","unstructured":"Riali, I., Fareh, M., Bouarfa, H.: A semantic approach for handling probabilistic knowledge of fuzzy ontologies. In: ICEIS (1), pp. 407\u2013414 (2019)","DOI":"10.5220\/0007724104070414"},{"issue":"4","key":"70_CR11","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1007\/s13748-019-00194-y","volume":"8","author":"M Scanagatta","year":"2019","unstructured":"Scanagatta, M., Salmer\u00f3n, A., Stella, F.: A survey on bayesian network structure learning from data. Prog. Artif. Intell. 8(4), 425\u2013439 (2019)","journal-title":"Prog. Artif. Intell."},{"key":"70_CR12","doi-asserted-by":"publisher","unstructured":"Setiawan, F.A., Budiardjo, E.K., Wibowo, W.C.: Bynowlife: A novel framework for owl and bayesian network integration. Information 10(3), 95 (2019). https:\/\/doi.org\/10.3390\/info10030095","DOI":"10.3390\/info10030095"},{"key":"70_CR13","unstructured":"Zheng, X., Aragam, B., Ravikumar, P., Xing, E.P.: DAGs with NO TEARS: Continuous Optimization for Structure Learning. In: Advances in Neural Information Processing Systems (2018)"},{"key":"70_CR14","unstructured":"Zheng, X., Dan, C., Aragam, B., Ravikumar, P., Xing, E.P.: Learning sparse nonparametric DAGs. In: International Conference on Artificial Intelligence and Statistics (2020)"}],"container-title":["Lecture Notes in Computer Science","Computer Aided Systems Theory \u2013 EUROCAST 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25312-6_70","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T19:01:30Z","timestamp":1675969290000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25312-6_70"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031253119","9783031253126"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25312-6_70","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"10 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EUROCAST","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computer Aided Systems Theory","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Las Palmas de Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 February 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 February 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eurocast2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eurocast2022.fulp.ulpgc.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}