{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:43:24Z","timestamp":1726188204021},"publisher-location":"Cham","reference-count":13,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031250873"},{"type":"electronic","value":"9783031250880"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-25088-0_69","type":"book-chapter","created":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T14:06:45Z","timestamp":1676383605000},"page":"785-792","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Role of Artificial Intelligence in the Screening of Neoplastic Oral Lesions"],"prefix":"10.1007","author":[{"given":"Paarangi","family":"Chawla","sequence":"first","affiliation":[]},{"given":"Partha","family":"Roy","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,15]]},"reference":[{"key":"69_CR1","doi-asserted-by":"crossref","unstructured":"Borse, V., Konwar, A.N., Buragohain, P.: \u201cOral cancer diagnosis and perspectives in India.\u2019\u2019 Sens. Int. 1, 100046 (2020)","DOI":"10.1016\/j.sintl.2020.100046"},{"key":"69_CR2","unstructured":"https:\/\/images.google.com"},{"key":"69_CR3","unstructured":"https:\/\/yandex.com\/images\/"},{"key":"69_CR4","unstructured":"Kayalibay, B., Jensen, G., Smagt, P.V.D.: CNN-based segmentation of medical imaging data. arXiv preprint arXiv:1701.03056 (2017)"},{"issue":"3","key":"69_CR5","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1007\/s12194-017-0406-5","volume":"10","author":"K Suzuki","year":"2017","unstructured":"Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257\u2013273 (2017). https:\/\/doi.org\/10.1007\/s12194-017-0406-5","journal-title":"Radiol. Phys. Technol."},{"issue":"5","key":"69_CR6","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1016\/S1368-8375(97)00002-X","volume":"33","author":"I Van der Waal","year":"1997","unstructured":"Van der Waal, I., et al.: Oral leukoplakia: a clinicopathological review. Oral Oncol. 33(5), 291\u2013301 (1997)","journal-title":"Oral Oncol."},{"key":"69_CR7","unstructured":"Wang, Y.: Melanoplakia of the oral mucosa. Zhonghua kou Qiang yi xue za zhi= Zhonghua Kouqiang Yixue Zazhi Chin. J. Stomatology 25(1), 2\u20134 (1990)"},{"key":"69_CR8","doi-asserted-by":"crossref","unstructured":"Peter, A.R., Philipsen, H.P.: Oral erythroplakia\u2014a review. Oral Oncol. 41(6), 551\u2013561 (2005)","DOI":"10.1016\/j.oraloncology.2004.12.003"},{"issue":"6","key":"69_CR9","doi-asserted-by":"publisher","first-page":"764","DOI":"10.1016\/0030-4220(66)90367-7","volume":"22","author":"JJ Pindborg","year":"1966","unstructured":"Pindborg, J.J., Sirsat, S.M.: Oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. 22(6), 764\u2013779 (1966)","journal-title":"Oral Surg. Oral Med. Oral Pathol."},{"issue":"4","key":"69_CR10","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1016\/j.jormas.2019.06.002","volume":"120","author":"A Fourcade","year":"2019","unstructured":"Fourcade, A., Khonsari, R.H.: Deep learning in medical image analysis: a third eye for doctors. J. Stomatology Oral Maxillofac. Surg. 120(4), 279\u2013288 (2019)","journal-title":"J. Stomatology Oral Maxillofac. Surg."},{"key":"69_CR11","doi-asserted-by":"crossref","unstructured":"Silverman, J.R.S.: Early diagnosis of oral cancer. Cancer 62 S1, 1796\u20131799 (1988)","DOI":"10.1002\/1097-0142(19881015)62:1+<1796::AID-CNCR2820621319>3.0.CO;2-E"},{"key":"69_CR12","doi-asserted-by":"crossref","unstructured":"Tanriver, G., Tekkesin, M.S., Ergen, O.: Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders. Cancers 13(11), 2766 (2021)","DOI":"10.3390\/cancers13112766"},{"key":"69_CR13","doi-asserted-by":"crossref","unstructured":"Mahmood, H., et al.: Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview. Br. J. Cancer 124(12), 1934\u20131940 (2021)","DOI":"10.1038\/s41416-021-01386-x"}],"container-title":["Communications in Computer and Information Science","Advanced Communication and Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25088-0_69","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T14:17:47Z","timestamp":1676384267000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25088-0_69"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031250873","9783031250880"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25088-0_69","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"15 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICACIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Communication and Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icacis2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icacis.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"258","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}