{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T04:50:07Z","timestamp":1742964607918,"version":"3.40.3"},"publisher-location":"Cham","reference-count":31,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031250873"},{"type":"electronic","value":"9783031250880"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-25088-0_15","type":"book-chapter","created":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T14:06:45Z","timestamp":1676383605000},"page":"180-194","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Cardiovascular Disease Prognosis and Analysis Using Machine Learning Techniques"],"prefix":"10.1007","author":[{"given":"Anmol","family":"Kapoor","sequence":"first","affiliation":[]},{"given":"Shreya","family":"Kapoor","sequence":"additional","affiliation":[]},{"given":"Kamal","family":"Upreti","sequence":"additional","affiliation":[]},{"given":"Prashant","family":"Singh","sequence":"additional","affiliation":[]},{"given":"Seema","family":"Kapoor","sequence":"additional","affiliation":[]},{"given":"Mohammad Shabbir","family":"Alam","sequence":"additional","affiliation":[]},{"given":"Mohammad Shahnawaz","family":"Nasir","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,15]]},"reference":[{"issue":"11","key":"15_CR1","doi-asserted-by":"publisher","first-page":"1317","DOI":"10.1016\/j.jacc.2018.12.054","volume":"73","author":"D Dey","year":"2019","unstructured":"Dey, D., et al.: Artificial intelligence in cardiovascular Imaging: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73(11), 1317\u20131335 (2019). https:\/\/doi.org\/10.1016\/j.jacc.2018.12.054. PMID: 30898208; PMCID: PMC6474254","journal-title":"J. Am. Coll. Cardiol."},{"key":"15_CR2","doi-asserted-by":"publisher","unstructured":"Seetharam, K., Shrestha, S., Sengupta, P.P.: Cardiovascular imaging and intervention through the lens of artificial intelligence. Interv. Cardiol. 16, e31 (2021). https:\/\/doi.org\/10.15420\/icr.2020.04. PMID: 34754333; PMCID: PMC8559149","DOI":"10.15420\/icr.2020.04"},{"issue":"3","key":"15_CR3","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1093\/ehjdh\/ztab054","volume":"2","author":"S Friedrich","year":"2021","unstructured":"Friedrich, S., et al.: Applications of artificial intelligence\/machine learning approaches in cardiovascular medicine: a systematic review with recommendations. Eur. Heart J. Digit. Health 2(3), 424\u2013436 (2021). https:\/\/doi.org\/10.1093\/ehjdh\/ztab054","journal-title":"Eur. Heart J. Digit. Health"},{"issue":"9","key":"15_CR4","doi-asserted-by":"publisher","first-page":"392","DOI":"10.1007\/s12471-019-1286-6","volume":"27","author":"JW Benjamins","year":"2019","unstructured":"Benjamins, J.W., Hendriks, T., Knuuti, J., Juarez-Orozco, L.E., van der Harst, P.: A primer in artificial intelligence in cardiovascular medicine. Neth. Hear. J. 27(9), 392\u2013402 (2019). https:\/\/doi.org\/10.1007\/s12471-019-1286-6","journal-title":"Neth. Hear. J."},{"key":"15_CR5","doi-asserted-by":"publisher","unstructured":"Anju, S., et al.: Discovering patterns of cardiovascular disease and diabetes in myocardial infarction patients using association rule mining. https:\/\/doi.org\/10.20473\/fmi.v58i3.34975. eISSN: 2599-056x","DOI":"10.20473\/fmi.v58i3.34975"},{"issue":"5","key":"15_CR6","doi-asserted-by":"publisher","first-page":"1323","DOI":"10.1016\/j.athoracsur.2019.09.042","volume":"109","author":"A Kilic","year":"2020","unstructured":"Kilic, A.: Artificial intelligence and machine learning in cardiovascular health care. Ann Thorac Surg. 109(5), 1323\u20131329 (2020). https:\/\/doi.org\/10.1016\/j.athoracsur.2019.09.042. PMID: 31706869","journal-title":"Ann Thorac Surg."},{"issue":"13","key":"15_CR7","doi-asserted-by":"publisher","first-page":"3910","DOI":"10.3390\/jcm11133910.","volume":"11","author":"G Koulaouzidis","year":"2022","unstructured":"Koulaouzidis, G., Jadczyk, T., Iakovidis, D.K., Koulaouzidis, A., Bisnaire, M., Charisopoulou, D.: Artificial intelligence in cardiology-a narrative review of current status. J. Clin. Med. 11(13), 3910 (2022). https:\/\/doi.org\/10.3390\/jcm11133910. PMID: 35807195; PMCID: PMC9267740","journal-title":"J. Clin. Med."},{"key":"15_CR8","doi-asserted-by":"publisher","unstructured":"Alam, M.S., Jalil, S.Z.A., Upreti, K.: Analyzing recognition of EEG based human attention and emotion using machine learning. Mater. Today Proc. 56, Part 6, 3349\u20133354 (2022). https:\/\/doi.org\/10.1016\/j.matpr.2021.10.190. ISSN 2214-7853","DOI":"10.1016\/j.matpr.2021.10.190"},{"issue":"21","key":"15_CR9","doi-asserted-by":"publisher","first-page":"2657","DOI":"10.1016\/j.jacc.2017.03.571","volume":"69","author":"C Krittanawong","year":"2017","unstructured":"Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., Kitai, T.: Artificial intelligence in precision cardiovascular medicine. J. Am. Coll. Cardiol. 69(21), 2657\u20132664 (2017). https:\/\/doi.org\/10.1016\/j.jacc.2017.03.571. PMID: 28545640","journal-title":"J. Am. Coll. Cardiol."},{"issue":"5","key":"15_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11936-019-0728-1","volume":"21","author":"K Seetharam","year":"2019","unstructured":"Seetharam, K., Shrestha, S., Sengupta, P.P.: Artificial intelligence in cardiovascular medicine. Curr. Treat. Options Cardiovasc. Med. 21(5), 1\u201314 (2019). https:\/\/doi.org\/10.1007\/s11936-019-0728-1","journal-title":"Curr. Treat. Options Cardiovasc. Med."},{"key":"15_CR11","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"917","DOI":"10.1007\/978-981-16-5987-4_90","volume-title":"ICT Systems and Sustainability","author":"K Upreti","year":"2022","unstructured":"Upreti, K., Singh, U.K., Jain, R., Kaur, K., Sharma, A.K.: Fuzzy logic based support vector regression (SVR) model for software cost estimation using machine learning. In: Tuba, M., Akashe, S., Joshi, A. (eds.) ICT Systems and Sustainability. LNNS, vol. 321, pp. 917\u2013927. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-5987-4_90"},{"issue":"18","key":"15_CR12","doi-asserted-by":"publisher","first-page":"517","DOI":"10.2147\/VHRM.S279337","volume":"12","author":"IU Haq","year":"2022","unstructured":"Haq, I.U., Chhatwal, K., Sanaka, K., Xu, B.: Artificial intelligence in cardiovascular medicine: current insights and future prospects. Vasc Health Risk Manag. 12(18), 517\u2013528 (2022). https:\/\/doi.org\/10.2147\/VHRM.S279337. PMID: 35855754; PMCID: PMC9288176","journal-title":"Vasc Health Risk Manag."},{"key":"15_CR13","doi-asserted-by":"publisher","unstructured":"Faizal, A.S.M., Malathi Thevarajah, T., Khor, S.M., Chang, S.-W.: A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. Comput. Methods Program. Biomed. 207, 106190 (2021). https:\/\/doi.org\/10.1016\/j.cmpb.2021.106190. ISSN: 0169-2607","DOI":"10.1016\/j.cmpb.2021.106190"},{"issue":"23","key":"15_CR14","doi-asserted-by":"publisher","first-page":"2668","DOI":"10.1016\/j.jacc.2018.03.521","volume":"71","author":"KW Johnson","year":"2018","unstructured":"Johnson, K.W., et al.: Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 71(23), 2668\u20132679 (2018). https:\/\/doi.org\/10.1016\/j.jacc.2018.03.521. PMID: 29880128","journal-title":"J. Am. Coll. Cardiol."},{"issue":"2","key":"15_CR15","doi-asserted-by":"publisher","first-page":"1203","DOI":"10.1364\/BOE.8.001203","volume":"8","author":"A Abdolmanafi","year":"2017","unstructured":"Abdolmanafi, A., Duong, L., Dahdah, N., Cheriet, F.: Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed Opt Express. 8(2), 1203\u20131220 (2017). https:\/\/doi.org\/10.1364\/BOE.8.001203. PMID: 28271012; PMCID: PMC5330543","journal-title":"Biomed Opt Express."},{"key":"15_CR16","unstructured":"Li, Y.: Reinforcement learning applications, 19 August 2019. https:\/\/arxiv.org\/abs\/1908.06973"},{"key":"15_CR17","doi-asserted-by":"publisher","DOI":"10.1111\/coin.12510","author":"M Haider","year":"2022","unstructured":"Haider, M., Upreti, K., Nasir, M., Alam, M., Sharma, A.K.: Addressing image and Poisson noise deconvolution problem using deep learning approaches. Comput. Intell. (2022). https:\/\/doi.org\/10.1111\/coin.12510","journal-title":"Comput. Intell."},{"issue":"12","key":"15_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11886-018-1074-8","volume":"20","author":"ME Dilsizian","year":"2018","unstructured":"Dilsizian, M.E., Siegel, E.L.: Machine meets biology: a primer on artificial intelligence in cardiology and cardiac imaging. Curr. Cardiol. Rep. 20(12), 1\u20137 (2018). https:\/\/doi.org\/10.1007\/s11886-018-1074-8","journal-title":"Curr. Cardiol. Rep."},{"key":"15_CR19","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1007\/s10994-005-4258-6","volume":"58","author":"G Webb","year":"2005","unstructured":"Webb, G., Boughton, J., Wang, Z.: Not so Naive Bayes: aggregating one-dependence estimators. Mach. Learn. 58, 5\u201324 (2005). https:\/\/doi.org\/10.1007\/s10994-005-4258-6","journal-title":"Mach. Learn."},{"issue":"4","key":"15_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-016-0432-6","volume":"40","author":"GB Berikol","year":"2016","unstructured":"Berikol, G.B., Yildiz, O., \u00d6zcan, \u0130T.: Diagnosis of acute coronary syndrome with a support vector machine. J. Med. Syst. 40(4), 1\u20138 (2016). https:\/\/doi.org\/10.1007\/s10916-016-0432-6","journal-title":"J. Med. Syst."},{"key":"15_CR21","doi-asserted-by":"publisher","first-page":"012009","DOI":"10.1088\/1742-6596\/1817\/1\/012009","volume":"1817","author":"M Palm","year":"2021","unstructured":"Palm, M., Parija, S.: Prediction of heart diseases using random forest. J. Phys. Conf. Ser. 1817, 012009 (2021)","journal-title":"J. Phys. Conf. Ser."},{"key":"15_CR22","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1007\/978-981-16-2164-2_21","volume-title":"Advanced Computing and Intelligent Technologies","author":"A Chakraborty","year":"2022","unstructured":"Chakraborty, A., Chatterjee, S., Majumder, K., Shaw, R.N., Ghosh, A.: A comparative study of myocardial infarction detection from ECG data using machine learning. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 257\u2013267. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-2164-2_21"},{"issue":"11","key":"15_CR23","doi-asserted-by":"publisher","first-page":"2078","DOI":"10.1016\/j.amjcard.2017.08.029","volume":"120","author":"MH Al-Mallah","year":"2017","unstructured":"Al-Mallah, M.H., et al.: Using machine learning to define the association between cardiorespiratory fitness and all-cause mortality (from the henry ford exercise testing project). Am. J. Cardiol. 120(11), 2078\u20132084 (2017). https:\/\/doi.org\/10.1016\/j.amjcard.2017.08.029. PMID: 28951020","journal-title":"Am. J. Cardiol."},{"key":"15_CR24","doi-asserted-by":"publisher","unstructured":"Saqib Nawaz, M., Shoaib, B., Ashraf, M.A.: Intelligent cardiovascular disease prediction empowered with gradient descent optimization, Heliyon 7(5), e06948 (2021). https:\/\/doi.org\/10.1016\/j.heliyon.2021.e06948. ISSN: 2405\u20138440","DOI":"10.1016\/j.heliyon.2021.e06948"},{"issue":"5","key":"15_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s42979-021-00731-4","volume":"2","author":"LJ Muhammad","year":"2021","unstructured":"Muhammad, L.J., Al-Shourbaji, I., Haruna, A.A., Mohammed, I.A., Ahmad, A., Jibrin, M.B.: Machine learning predictive models for coronary artery disease. SN Comput. Sci. 2(5), 1\u201311 (2021). https:\/\/doi.org\/10.1007\/s42979-021-00731-4","journal-title":"SN Comput. Sci."},{"key":"15_CR26","doi-asserted-by":"publisher","first-page":"19304","DOI":"10.1109\/ACCESS.2021.3053759","volume":"9","author":"P Ghosh","year":"2021","unstructured":"Ghosh, P., et al.: Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access 9, 19304\u201319326 (2021). https:\/\/doi.org\/10.1109\/ACCESS.2021.3053759","journal-title":"IEEE Access"},{"issue":"8","key":"15_CR27","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0198603","volume":"13","author":"TD Stuckey","year":"2018","unstructured":"Stuckey, T.D., et al.: Cardiac Phase Space Tomography: a novel method of assessing coronary artery disease utilizing machine learning. PLoS ONE 13(8), e0198603 (2018). https:\/\/doi.org\/10.1371\/journal.pone.0198603. PMID: 30089110; PMCID: PMC6082503","journal-title":"PLoS ONE"},{"key":"15_CR28","doi-asserted-by":"publisher","unstructured":"Kanwal, S., Rashid, J., Nisar, M.W., Kim, J., Hussain, A.: An effective classification algorithm for heart disease prediction with genetic algorithm for feature selection. In: 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), pp. 1\u20136 (2021). https:\/\/doi.org\/10.1109\/MAJICC53071.2021.9526242","DOI":"10.1109\/MAJICC53071.2021.9526242"},{"issue":"2","key":"15_CR29","first-page":"68","volume":"5","author":"V Cherian","year":"2017","unstructured":"Cherian, V., Bindu, M.S.: Heart disease prediction using na\u00efve Bayes algorithm and Laplace smoothing technique. Int. J. Comput. Sci. Trends Technol. (IJCST) 5(2), 68\u201373 (2017)","journal-title":"Int. J. Comput. Sci. Trends Technol. (IJCST)"},{"key":"15_CR30","doi-asserted-by":"publisher","unstructured":"Upreti, K., et al.: Prediction of mechanical strength by using an artificial neural network and random forest algorithm. J. Nanomater. 2022 (2022). https:\/\/doi.org\/10.1155\/2022\/7791582","DOI":"10.1155\/2022\/7791582"},{"key":"15_CR31","doi-asserted-by":"publisher","unstructured":"Souza Filho, E.M., et al.: Artificial intelligence in cardiology: concepts, tools and challenges - \u201cThe Horse is the One Who Runs, You Must Be the Jockey\u201d. Arq Bras Cardiol. 114(4), 718\u2013725 (2020). https:\/\/doi.org\/10.36660\/abc.20180431. English, Portuguese. PMID: 32491009","DOI":"10.36660\/abc.20180431"}],"container-title":["Communications in Computer and Information Science","Advanced Communication and Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25088-0_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T14:07:36Z","timestamp":1676383656000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25088-0_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031250873","9783031250880"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25088-0_15","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"15 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICACIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Communication and Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icacis2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icacis.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"258","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}