{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:43:32Z","timestamp":1726188212639},"publisher-location":"Cham","reference-count":12,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031250873"},{"type":"electronic","value":"9783031250880"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-25088-0_11","type":"book-chapter","created":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T15:24:35Z","timestamp":1676388275000},"page":"134-145","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Prediction of Glaucoma Using Deep Learning Based Approaches"],"prefix":"10.1007","author":[{"given":"Tiyasha","family":"Dhara","sequence":"first","affiliation":[]},{"given":"Arpan","family":"Adhikary","sequence":"additional","affiliation":[]},{"given":"Koushik","family":"Majumder","sequence":"additional","affiliation":[]},{"given":"Santanu","family":"Chatterjee","sequence":"additional","affiliation":[]},{"given":"Rabindra Nath","family":"Shaw","sequence":"additional","affiliation":[]},{"given":"Ankush","family":"Ghosh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,15]]},"reference":[{"issue":"6","key":"11_CR1","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1016\/j.ogla.2019.08.004","volume":"2","author":"P Wang","year":"2019","unstructured":"Wang, P., et al.: Machine learning models for diagnosing glaucoma from retinal nerve fiber layer thickness maps. Ophthalmol. Glaucoma 2(6), 422\u2013428 (2019)","journal-title":"Ophthalmol. Glaucoma"},{"issue":"1","key":"11_CR2","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.ophtha.2019.05.029","volume":"127","author":"J Son","year":"2020","unstructured":"Son, J., Shin, J.Y., Kim, H.D., Jung, K.H., Park, K.H., Park, S.J.: Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology 127(1), 85\u201394 (2020)","journal-title":"Ophthalmology"},{"key":"11_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2020.102137","volume":"62","author":"N Thakur","year":"2020","unstructured":"Thakur, N., Juneja, M.: Classification of glaucoma using hybrid features with machine learning approaches. Biomed. Sig. Process. Control 62, 102137 (2020)","journal-title":"Biomed. Sig. Process. Control"},{"issue":"9","key":"11_CR4","doi-asserted-by":"publisher","first-page":"1974","DOI":"10.1016\/j.ophtha.2016.05.029","volume":"123","author":"R Asaoka","year":"2016","unstructured":"Asaoka, R., Murata, H., Iwase, A., Araie, M.: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology 123(9), 1974\u20131980 (2016)","journal-title":"Ophthalmology"},{"issue":"1","key":"11_CR5","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1007\/s10384-019-00706-2","volume":"64","author":"J Lee","year":"2019","unstructured":"Lee, J., Kim, Y.K., Jeoung, J.W., Ha, A., Kim, Y.W., Park, K.H.: Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients. Jpn. J. Ophthalmol. 64(1), 68\u201376 (2019). https:\/\/doi.org\/10.1007\/s10384-019-00706-2","journal-title":"Jpn. J. Ophthalmol."},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"Serte, S., Serener, A.: A generalized deep learning model for glaucoma detection. In: 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1\u20135. IEEE (2019)","DOI":"10.1109\/ISMSIT.2019.8932753"},{"issue":"2","key":"11_CR7","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1167\/tvst.9.2.27","volume":"9","author":"M Christopher","year":"2020","unstructured":"Christopher, M., et al.: Effects of study population, labeling and training on glaucoma detection using deep learning algorithms. Transl. Vis. Sci. Technol. 9(2), 27 (2020)","journal-title":"Transl. Vis. Sci. Technol."},{"issue":"6","key":"11_CR8","first-page":"41","volume":"8","author":"Q Abbas","year":"2017","unstructured":"Abbas, Q.: Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int. J. Adv. Comput. Sci. Appl. 8(6), 41\u201345 (2017)","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"key":"11_CR9","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1016\/j.knosys.2018.07.043","volume":"161","author":"Y Chai","year":"2018","unstructured":"Chai, Y., Liu, H., Xu, J.: Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models. Knowl.-Based Syst. 161, 147\u2013156 (2018)","journal-title":"Knowl.-Based Syst."},{"key":"11_CR10","unstructured":"Dataset used for the paper. https:\/\/www.kaggle.com\/datasets\/lokeshsaipureddi\/drishtigs-retina-dataset-for-onh-segmentation"},{"key":"11_CR11","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1007\/978-981-16-2164-2_21","volume-title":"Advanced Computing and Intelligent Technologies","author":"A Chakraborty","year":"2022","unstructured":"Chakraborty, A., Chatterjee, S., Majumder, K., Shaw, R.N., Ghosh, A.: A comparative study of myocardial infarction detection from ECG data using machine learning. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 257\u2013267. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-2164-2_21"},{"issue":"22","key":"11_CR12","doi-asserted-by":"publisher","first-page":"2211","DOI":"10.1001\/jama.2017.18152","volume":"318","author":"DSW Ting","year":"2017","unstructured":"Ting, D.S.W., et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22), 2211\u20132223 (2017)","journal-title":"JAMA"}],"container-title":["Communications in Computer and Information Science","Advanced Communication and Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25088-0_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T15:33:49Z","timestamp":1676388829000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25088-0_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031250873","9783031250880"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25088-0_11","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"15 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICACIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Communication and Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icacis2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icacis.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"258","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}