{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T10:21:19Z","timestamp":1743070879695,"version":"3.40.3"},"publisher-location":"Cham","reference-count":56,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031250712"},{"type":"electronic","value":"9783031250729"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-25072-9_8","type":"book-chapter","created":{"date-parts":[[2023,2,17]],"date-time":"2023-02-17T08:40:04Z","timestamp":1676623204000},"page":"113-129","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["UDC-UNet: Under-Display Camera Image Restoration via\u00a0U-shape Dynamic Network"],"prefix":"10.1007","author":[{"given":"Xina","family":"Liu","sequence":"first","affiliation":[]},{"given":"Jinfan","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Xiangyu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Dong","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,18]]},"reference":[{"key":"8_CR1","doi-asserted-by":"publisher","unstructured":"Calvetti, D., Reichel, L., Zhang, Q.: Iterative solution methods for large linear discrete ill-posed problems. In: Datta, B.N. (eds.) Applied and Computational Control, Signals, and Circuits, pp. 313\u2013367. Springer, Boston (1999). https:\/\/doi.org\/10.1007\/978-1-4612-0571-5_7","DOI":"10.1007\/978-1-4612-0571-5_7"},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299\u201312310 (2021)","DOI":"10.1109\/CVPR46437.2021.01212"},{"key":"8_CR3","doi-asserted-by":"crossref","unstructured":"Chen, X., Liu, Y., Zhang, Z., Qiao, Y., Dong, C.: HdruNet: single image HDR reconstruction with denoising and dequantization. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 354\u2013363 (2021)","DOI":"10.1109\/CVPRW53098.2021.00045"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Chen, X., Wang, X., Zhou, J., Dong, C.: Activating more pixels in image super-resolution transformer. arXiv preprint arXiv:2205.04437 (2022)","DOI":"10.1109\/CVPR52729.2023.02142"},{"key":"8_CR5","doi-asserted-by":"crossref","unstructured":"Chen, X., Zhang, Z., Ren, J.S., Tian, L., Qiao, Y., Dong, C.: A new journey from SDRTV to HDRTV. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision., pp. 4500\u20134509 (2021)","DOI":"10.1109\/ICCV48922.2021.00446"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 4641\u20134650 (2021)","DOI":"10.1109\/ICCV48922.2021.00460"},{"key":"8_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1007\/978-3-319-10593-2_13","volume-title":"Computer Vision \u2013 ECCV 2014","author":"C Dong","year":"2014","unstructured":"Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184\u2013199. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10593-2_13"},{"key":"8_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1007\/978-3-319-10593-2_13","volume-title":"Computer Vision \u2013 ECCV 2014","author":"C Dong","year":"2014","unstructured":"Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184\u2013199. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10593-2_13"},{"key":"8_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1007\/978-3-319-46475-6_25","volume-title":"Computer Vision \u2013 ECCV 2016","author":"C Dong","year":"2016","unstructured":"Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391\u2013407. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_25"},{"issue":"6","key":"8_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3130800.3130816","volume":"36","author":"G Eilertsen","year":"2017","unstructured":"Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R.K., Unger, J.: HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Graphics 36(6), 1\u201315 (2017)","journal-title":"ACM Trans. Graphics"},{"key":"8_CR11","doi-asserted-by":"crossref","unstructured":"Feng, R., Li, C., Chen, H., Li, S., Loy, C.C., Gu, J.: Removing diffraction image artifacts in under-display camera via dynamic skip connection network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 662\u2013671 (2021)","DOI":"10.1109\/CVPR46437.2021.00072"},{"key":"8_CR12","doi-asserted-by":"crossref","unstructured":"Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855\u20133863 (2017)","DOI":"10.1109\/CVPR.2017.186"},{"key":"8_CR13","doi-asserted-by":"crossref","unstructured":"Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3848\u20133856 (2019)","DOI":"10.1109\/CVPR.2019.00397"},{"issue":"7","key":"8_CR14","doi-asserted-by":"publisher","first-page":"2943","DOI":"10.1109\/18.737524","volume":"44","author":"JS Goldstein","year":"1998","unstructured":"Goldstein, J.S., Reed, I.S., Scharf, L.L.: A multistage representation of the wiener filter based on orthogonal projections. IEEE Trans. Inf. Theory 44(7), 2943\u20132959 (1998)","journal-title":"IEEE Trans. Inf. Theory"},{"key":"8_CR15","doi-asserted-by":"crossref","unstructured":"Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1604\u20131613 (2019)","DOI":"10.1109\/CVPR.2019.00170"},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1712\u20131722 (2019)","DOI":"10.1109\/CVPR.2019.00181"},{"issue":"1","key":"8_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/BF02149761","volume":"6","author":"PC Hansen","year":"1994","unstructured":"Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Num. Algorithms 6(1), 1\u201335 (1994)","journal-title":"Num. Algorithms"},{"key":"8_CR18","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026\u20131034 (2015)","DOI":"10.1109\/ICCV.2015.123"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Jauch, W.: The maximum-entropy method in charge-density studies. II. general aspects of reliability. Acta Crystallographica Sect. A Found. Crystallogr. 50(5), 650\u2013652 (1994)","DOI":"10.1107\/S0108767394004472"},{"key":"8_CR20","doi-asserted-by":"crossref","unstructured":"Kim, S.Y., Oh, J., Kim, M.: Deep SR-ITM: joint learning of super-resolution and inverse tone-mapping for 4k UHD HDR applications. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3116\u20133125 (2019)","DOI":"10.1109\/ICCV.2019.00321"},{"key":"8_CR21","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"8_CR22","doi-asserted-by":"crossref","unstructured":"Kong, X., Liu, X., Gu, J., Qiao, Y., Dong, C.: Reflash dropout in image super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6002\u20136012 (2022)","DOI":"10.1109\/CVPR52688.2022.00591"},{"key":"8_CR23","doi-asserted-by":"crossref","unstructured":"Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 8878\u20138887 (2019)","DOI":"10.1109\/ICCV.2019.00897"},{"issue":"20","key":"8_CR24","first-page":"1","volume":"2016","author":"HJ Kwon","year":"2016","unstructured":"Kwon, H.J., Yang, C.M., Kim, M.C., Kim, C.W., Ahn, J.Y., Kim, P.R.: Modeling of luminance transition curve of transparent plastics on transparent OLED displays. Electr. Imaging 2016(20), 1\u20134 (2016)","journal-title":"Electr. Imaging"},{"key":"8_CR25","doi-asserted-by":"crossref","unstructured":"Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: towards diverse and interactive facial image manipulation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5549\u20135558 (2020)","DOI":"10.1109\/CVPR42600.2020.00559"},{"key":"8_CR26","unstructured":"Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)"},{"issue":"8","key":"8_CR27","doi-asserted-by":"publisher","first-page":"1025","DOI":"10.1007\/s11263-018-01146-0","volume":"127","author":"L Li","year":"2019","unstructured":"Li, L., Pan, J., Lai, W.S., Gao, C., Sang, N., Yang, M.H.: Blind image deblurring via deep discriminative priors. Int. J. Comput. Vision 127(8), 1025\u20131043 (2019)","journal-title":"Int. J. Comput. Vision"},{"key":"8_CR28","unstructured":"Li, W., Lu, X., Lu, J., Zhang, X., Jia, J.: On efficient transformer and image pre-training for low-level vision. arXiv preprint arXiv:2112.10175 (2021)"},{"key":"8_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1007\/978-3-030-01234-2_16","volume-title":"Computer Vision \u2013 ECCV 2018","author":"X Li","year":"2018","unstructured":"Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 262\u2013277. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_16"},{"key":"8_CR30","doi-asserted-by":"crossref","unstructured":"Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2736\u20132744 (2016)","DOI":"10.1109\/CVPR.2016.299"},{"key":"8_CR31","doi-asserted-by":"crossref","unstructured":"Li, Z., et al.: Blueprint separable residual network for efficient image super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 833\u2013843 (2022)","DOI":"10.1109\/CVPRW56347.2022.00099"},{"key":"8_CR32","doi-asserted-by":"crossref","unstructured":"Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration using swin transformer. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1833\u20131844 (2021)","DOI":"10.1109\/ICCVW54120.2021.00210"},{"key":"8_CR33","doi-asserted-by":"crossref","unstructured":"Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 773\u2013782 (2018)","DOI":"10.1109\/CVPRW.2018.00121"},{"key":"8_CR34","doi-asserted-by":"crossref","unstructured":"Liu, Y.L., et al.: Single-image HDR reconstruction by learning to reverse the camera pipeline. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1651\u20131660 (2020)","DOI":"10.1109\/CVPR42600.2020.00172"},{"key":"8_CR35","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: AdNet: attention-guided deformable convolutional network for high dynamic range imaging. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 463\u2013470 (2021)","DOI":"10.1109\/CVPRW53098.2021.00057"},{"issue":"6","key":"8_CR36","doi-asserted-by":"publisher","first-page":"2094","DOI":"10.1109\/18.720533","volume":"44","author":"JA O\u2019Sullivan","year":"1998","unstructured":"O\u2019Sullivan, J.A., Blahut, R.E., Snyder, D.L.: Information-theoretic image formation. IEEE Trans. Inf. Theory 44(6), 2094\u20132123 (1998)","journal-title":"IEEE Trans. Inf. Theory"},{"key":"8_CR37","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1007\/978-3-030-58539-6_20","volume-title":"Computer Vision \u2013 ECCV 2020","author":"D Park","year":"2020","unstructured":"Park, D., Kang, D.U., Kim, J., Chun, S.Y.: Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 327\u2013343. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58539-6_20"},{"issue":"11","key":"8_CR38","doi-asserted-by":"publisher","first-page":"1242","DOI":"10.1109\/JDT.2016.2594815","volume":"12","author":"Z Qin","year":"2016","unstructured":"Qin, Z., Tsai, Y.H., Yeh, Y.W., Huang, Y.P., Shieh, H.P.D.: See-through image blurring of transparent organic light-emitting diodes display: calculation method based on diffraction and analysis of pixel structures. J. Display Technol. 12(11), 1242\u20131249 (2016)","journal-title":"J. Display Technol."},{"issue":"4","key":"8_CR39","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/JPHOT.2017.2722000","volume":"9","author":"Z Qin","year":"2017","unstructured":"Qin, Z., Xie, J., Lin, F.C., Huang, Y.P., Shieh, H.P.D.: Evaluation of a transparent display\u2019s pixel structure regarding subjective quality of diffracted see-through images. IEEE Photon. J. 9(4), 1\u201314 (2017)","journal-title":"IEEE Photon. J."},{"key":"8_CR40","doi-asserted-by":"crossref","unstructured":"Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937\u20133946 (2019)","DOI":"10.1109\/CVPR.2019.00406"},{"key":"8_CR41","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"8_CR42","doi-asserted-by":"crossref","unstructured":"Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image dehazing. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2808\u20132817 (2020)","DOI":"10.1109\/CVPR42600.2020.00288"},{"key":"8_CR43","doi-asserted-by":"publisher","unstructured":"Starck, J.L., Murtagh, F.: Astronomical Image and Data Analysis. Springer Berlin (2007). https:\/\/doi.org\/10.1007\/978-3-662-04906-8","DOI":"10.1007\/978-3-662-04906-8"},{"issue":"800","key":"8_CR44","doi-asserted-by":"publisher","first-page":"1051","DOI":"10.1086\/342606","volume":"114","author":"JL Starck","year":"2002","unstructured":"Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in astronomy: a review. Publ. Astron. Soc. Pac. 114(800), 1051 (2002)","journal-title":"Publ. Astron. Soc. Pac."},{"key":"8_CR45","doi-asserted-by":"crossref","unstructured":"Tang, Q., Jiang, H., Mei, X., Hou, S., Liu, G., Li, Z.: 28\u20132: study of the image blur through ffs LCD panel caused by diffraction for camera under panel. In: SID Symposium Digest of Technical Papers, vol. 51, pp. 406\u2013409. Wiley Online Library (2020)","DOI":"10.1002\/sdtp.13890"},{"key":"8_CR46","doi-asserted-by":"crossref","unstructured":"Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 606\u2013615 (2018)","DOI":"10.1109\/CVPR.2018.00070"},{"key":"8_CR47","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1007\/978-3-030-11021-5_5","volume-title":"Computer Vision \u2013 ECCV 2018 Workshops","author":"X Wang","year":"2019","unstructured":"Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taix\u00e9, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63\u201379. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-11021-5_5"},{"key":"8_CR48","doi-asserted-by":"crossref","unstructured":"Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: UforMer: a general u-shaped transformer for image restoration. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 17683\u201317693 (2022)","DOI":"10.1109\/CVPR52688.2022.01716"},{"key":"8_CR49","doi-asserted-by":"crossref","unstructured":"Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728\u20135739 (2022)","DOI":"10.1109\/CVPR52688.2022.00564"},{"key":"8_CR50","doi-asserted-by":"crossref","unstructured":"Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: RestorMer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728\u20135739 (2022)","DOI":"10.1109\/CVPR52688.2022.00564"},{"issue":"7","key":"8_CR51","doi-asserted-by":"publisher","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","volume":"26","author":"K Zhang","year":"2017","unstructured":"Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142\u20133155 (2017)","journal-title":"IEEE Trans. Image Process."},{"issue":"9","key":"8_CR52","doi-asserted-by":"publisher","first-page":"4608","DOI":"10.1109\/TIP.2018.2839891","volume":"27","author":"K Zhang","year":"2018","unstructured":"Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608\u20134622 (2018)","journal-title":"IEEE Trans. Image Process."},{"key":"8_CR53","doi-asserted-by":"crossref","unstructured":"Zhang, K., et al.: Deblurring by realistic blurring. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2737\u20132746 (2020)","DOI":"10.1109\/CVPR42600.2020.00281"},{"key":"8_CR54","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"294","DOI":"10.1007\/978-3-030-01234-2_18","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Y Zhang","year":"2018","unstructured":"Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294\u2013310. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_18"},{"key":"8_CR55","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Ren, D., Emerton, N., Lim, S., Large, T.: Image restoration for under-display camera. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9179\u20139188 (2021)","DOI":"10.1109\/CVPR46437.2021.00906"},{"key":"8_CR56","doi-asserted-by":"crossref","unstructured":"Zhu, L., Fu, C.W., Lischinski, D., Heng, P.A.: Joint bi-layer optimization for single-image rain streak removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2526\u20132534 (2017)","DOI":"10.1109\/ICCV.2017.276"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25072-9_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T15:34:42Z","timestamp":1710257682000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25072-9_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031250712","9783031250729"],"references-count":56,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25072-9_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"18 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"From the workshops, 367 reviewed full papers have been selected for publication","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}