{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:39:00Z","timestamp":1726187940438},"publisher-location":"Cham","reference-count":39,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031250682"},{"type":"electronic","value":"9783031250699"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-25069-9_31","type":"book-chapter","created":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T00:15:46Z","timestamp":1676333746000},"page":"470-486","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Empirical Evaluation of\u00a0Deep Learning Approaches for\u00a0Landmark Detection in\u00a0Fish Bioimages"],"prefix":"10.1007","author":[{"given":"Navdeep","family":"Kumar","sequence":"first","affiliation":[]},{"given":"Claudia Di","family":"Biagio","sequence":"additional","affiliation":[]},{"given":"Zachary","family":"Dellacqua","sequence":"additional","affiliation":[]},{"given":"Ratish","family":"Raman","sequence":"additional","affiliation":[]},{"given":"Arianna","family":"Martini","sequence":"additional","affiliation":[]},{"given":"Clara","family":"Boglione","sequence":"additional","affiliation":[]},{"given":"Marc","family":"Muller","sequence":"additional","affiliation":[]},{"given":"Pierre","family":"Geurts","sequence":"additional","affiliation":[]},{"given":"Rapha\u00ebl","family":"Mar\u00e9e","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,14]]},"reference":[{"key":"31_CR1","unstructured":"Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https:\/\/www.tensorflow.org\/, software available from tensorflow.org"},{"key":"31_CR2","doi-asserted-by":"crossref","unstructured":"Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686\u20133693 (2014)","DOI":"10.1109\/CVPR.2014.471"},{"key":"31_CR3","doi-asserted-by":"crossref","unstructured":"Aubert, B., Vazquez, C., Cresson, T., Parent, S., De Guise, J.: Automatic spine and pelvis detection in frontal x-rays using deep neural networks for patch displacement learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1426\u20131429. IEEE (2016)","DOI":"10.1109\/ISBI.2016.7493535"},{"key":"31_CR4","doi-asserted-by":"publisher","unstructured":"Bookstein, F.L.: Combining the tools of geometric morphometrics. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds) Advances in Morphometrics. NATO ASI Series, vol 284, pp. 131\u2013151. Springer, Boston (1996). https:\/\/doi.org\/10.1007\/978-1-4757-9083-2_12(1996)","DOI":"10.1007\/978-1-4757-9083-2_12"},{"key":"31_CR5","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. Ieee (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"31_CR6","doi-asserted-by":"publisher","first-page":"730","DOI":"10.3389\/fnins.2021.670287","volume":"15","author":"CA Edwards","year":"2021","unstructured":"Edwards, C.A., Goyal, A., Rusheen, A.E., Kouzani, A.Z., Lee, K.H.: Deepnavnet: automated landmark localization for neuronavigation. Front. Neurosci. 15, 730 (2021)","journal-title":"Front. Neurosci."},{"key":"31_CR7","doi-asserted-by":"crossref","unstructured":"Fragkoulis, S., Printzi, A., Geladakis, G., Katribouzas, N., Koumoundouros, G.: Recovery of haemal lordosis in gilthead seabream (sparus aurata l.). Sci. Rep. 9(1), 1\u201311 (2019)","DOI":"10.1038\/s41598-019-46334-1"},{"key":"31_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1007\/978-3-319-46487-9_6","volume-title":"Computer Vision \u2013 ECCV 2016","author":"Y Guo","year":"2016","unstructured":"Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87\u2013102. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46487-9_6"},{"key":"31_CR9","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"31_CR10","unstructured":"Huang, W., Yang, C., Hou, T.: Spine landmark localization with combining of heatmap regression and direct coordinate regression. arXiv preprint arXiv:2007.05355 (2020)"},{"key":"31_CR11","doi-asserted-by":"crossref","unstructured":"Ibragimov, B., Vrtovec, T.: Landmark-based statistical shape representations. In: Statistical Shape and Deformation Analysis, pp. 89\u2013113. Elsevier (2017)","DOI":"10.1016\/B978-0-12-810493-4.00005-5"},{"key":"31_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1007\/978-3-319-46466-4_3","volume-title":"Computer Vision \u2013 ECCV 2016","author":"E Insafutdinov","year":"2016","unstructured":"Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34\u201350. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46466-4_3"},{"key":"31_CR13","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1016\/j.reprotox.2020.08.004","volume":"96","author":"S Jarque","year":"2020","unstructured":"Jarque, S., Rubio-Brotons, M., Ibarra, J., Ordo\u00f1ez, V., Dyballa, S., Mi\u00f1ana, R., Terriente, J.: Morphometric analysis of developing zebrafish embryos allows predicting teratogenicity modes of action in higher vertebrates. Reprod. Toxicol. 96, 337\u2013348 (2020)","journal-title":"Reprod. Toxicol."},{"key":"31_CR14","doi-asserted-by":"crossref","unstructured":"Khabarlak, K., Koriashkina, L.: Fast facial landmark detection and applications: A survey. arXiv preprint arXiv:2101.10808 (2021)","DOI":"10.24215\/16666038.22.e02"},{"issue":"5","key":"31_CR15","doi-asserted-by":"publisher","first-page":"1144","DOI":"10.1109\/TCSVT.2016.2645723","volume":"28","author":"H Lai","year":"2016","unstructured":"Lai, H., Xiao, S., Pan, Y., Cui, Z., Feng, J., Xu, C., Yin, J., Yan, S.: Deep recurrent regression for facial landmark detection. IEEE Trans. Circuits Syst. Video Technol. 28(5), 1144\u20131157 (2016)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Lee, H., Park, M., Kim, J.: Cephalometric landmark detection in dental x-ray images using convolutional neural networks. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 101341W. International Society for Optics and Photonics (2017)","DOI":"10.1117\/12.2255870"},{"key":"31_CR17","unstructured":"Lindner, C., Cootes, T.F.: Fully automatic cephalometric evaluation using random forest regression-voting. In: IEEE International Symposium on Biomedical Imaging (ISBI) 2015-Grand Challenges in Dental X-ray Image Analysis-Automated Detection and Analysis for Diagnosis in Cephalometric X-ray Image (2015)"},{"key":"31_CR18","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431\u20133440 (2015)","DOI":"10.1109\/CVPR.2015.7298965"},{"issue":"3","key":"31_CR19","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1046\/j.1439-0426.1999.00116.x","volume":"15","author":"BA Loy","year":"1999","unstructured":"Loy, B.A., Boglione, C., Cataudella, S.: Geometric morphometrics and morpho-anatomy: a combined tool in the study of sea bream (sparus aurata, sparidae) shape. J. Appl. Ichthyol. 15(3), 104\u2013110 (1999)","journal-title":"J. Appl. Ichthyol."},{"key":"31_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2021.103171","volume":"205","author":"S Mahpod","year":"2021","unstructured":"Mahpod, S., Das, R., Maiorana, E., Keller, Y., Campisi, P.: Facial landmarks localization using cascaded neural networks. Comput. Vis. Image Underst. 205, 103171 (2021)","journal-title":"Comput. Vis. Image Underst."},{"issue":"9","key":"31_CR21","doi-asserted-by":"publisher","first-page":"1395","DOI":"10.1093\/bioinformatics\/btw013","volume":"32","author":"R Mar\u00e9e","year":"2016","unstructured":"Mar\u00e9e, R., Rollus, L., St\u00e9vens, B., Hoyoux, R., Louppe, G., Vandaele, R., Begon, J.M., Kainz, P., Geurts, P., Wehenkel, L.: Collaborative analysis of multi-gigapixel imaging data using cytomine. Bioinformatics 32(9), 1395\u20131401 (2016)","journal-title":"Bioinformatics"},{"issue":"9","key":"31_CR22","doi-asserted-by":"publisher","first-page":"1281","DOI":"10.1038\/s41593-018-0209-y","volume":"21","author":"A Mathis","year":"2018","unstructured":"Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., Bethge, M.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281\u20131289 (2018)","journal-title":"Nat. Neurosci."},{"key":"31_CR23","doi-asserted-by":"crossref","unstructured":"Mohseni, H., Kasaei, S.: Automatic localization of cephalometric landmarks. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 396\u2013401. IEEE (2007)","DOI":"10.1109\/ISSPIT.2007.4458132"},{"issue":"6","key":"31_CR24","doi-asserted-by":"publisher","first-page":"903","DOI":"10.2319\/022019-127.1","volume":"89","author":"JH Park","year":"2019","unstructured":"Park, J.H., Hwang, H.W., Moon, J.H., Yu, Y., Kim, H., Her, S.B., Srinivasan, G., Aljanabi, M.N.A., Donatelli, R.E., Lee, S.J.: Automated identification of cephalometric landmarks: Part 1-comparisons between the latest deep-learning methods yolov3 and ssd. Angle Orthod. 89(6), 903\u2013909 (2019)","journal-title":"Angle Orthod."},{"key":"31_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1007\/978-3-319-46723-8_27","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016","author":"C Payer","year":"2016","unstructured":"Payer, C., \u0160tern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230\u2013238. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46723-8_27"},{"key":"31_CR26","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1016\/j.media.2019.03.007","volume":"54","author":"C Payer","year":"2019","unstructured":"Payer, C., \u0160tern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207\u2013219 (2019)","journal-title":"Med. Image Anal."},{"issue":"1","key":"31_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10462-012-9356-9","volume":"43","author":"SS Rautaray","year":"2015","unstructured":"Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1\u201354 (2015)","journal-title":"Artif. Intell. Rev."},{"key":"31_CR28","doi-asserted-by":"crossref","unstructured":"Riegler, G., Urschler, M., Ruther, M., Bischof, H., Stern, D.: Anatomical landmark detection in medical applications driven by synthetic data. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 12\u201316 (2015)","DOI":"10.1109\/ICCVW.2015.21"},{"key":"31_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, U-net: Convolutional networks for biomedical image segmentation (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"31_CR30","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2021.104285","volume":"115","author":"N Samet","year":"2021","unstructured":"Samet, N., Akbas, E.: Hprnet: hierarchical point regression for whole-body human pose estimation. Image Vis. Comput. 115, 104285 (2021)","journal-title":"Image Vis. Comput."},{"key":"31_CR31","doi-asserted-by":"crossref","unstructured":"Song, Y., Qiao, X., Iwamoto, Y., Chen, Y.W.: Automatic cephalometric landmark detection on x-ray images using a deep-learning method. Appl. Sci. 10(7), 2547 (2020)","DOI":"10.3390\/app10072547"},{"key":"31_CR32","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/978-3-642-24855-9_16","volume-title":"Pattern Recognition in Bioinformatics","author":"O Stern","year":"2011","unstructured":"Stern, O., Mar\u00e9e, R., Aceto, J., Jeanray, N., Muller, M., Wehenkel, L., Geurts, P.: Automatic localization of interest points in zebrafish images with tree-based methods. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS, vol. 7036, pp. 179\u2013190. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-24855-9_16"},{"key":"31_CR33","doi-asserted-by":"crossref","unstructured":"Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693\u20135703 (2019)","DOI":"10.1109\/CVPR.2019.00584"},{"issue":"4","key":"31_CR34","doi-asserted-by":"publisher","first-page":"919","DOI":"10.1109\/TMI.2018.2875814","volume":"38","author":"N Torosdagli","year":"2018","unstructured":"Torosdagli, N., Liberton, D.K., Verma, P., Sincan, M., Lee, J.S., Bagci, U.: Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans. Med. Imaging 38(4), 919\u2013931 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"31_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-017-18993-5","volume":"8","author":"R Vandaele","year":"2018","unstructured":"Vandaele, R., Aceto, J., Muller, M., Peronnet, F., Debat, V., Wang, C.W., Huang, C.T., Jodogne, S., Martinive, P., Geurts, P., et al.: Landmark detection in 2d bioimages for geometric morphometrics: a multi-resolution tree-based approach. Sci. Rep. 8(1), 1\u201313 (2018)","journal-title":"Sci. Rep."},{"issue":"1\u20134","key":"31_CR36","doi-asserted-by":"publisher","first-page":"156","DOI":"10.1016\/j.aquaculture.2007.04.037","volume":"268","author":"Y Verhaegen","year":"2007","unstructured":"Verhaegen, Y., Adriaens, D., De Wolf, T., Dhert, P., Sorgeloos, P.: Deformities in larval gilthead sea bream (sparus aurata): a qualitative and quantitative analysis using geometric morphometrics. Aquaculture 268(1\u20134), 156\u2013168 (2007)","journal-title":"Aquaculture"},{"issue":"1","key":"31_CR37","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-018-34848-z","volume":"8","author":"V Weinhardt","year":"2018","unstructured":"Weinhardt, V., Shkarin, R., Wernet, T., Wittbrodt, J., Baumbach, T., Loosli, F.: Quantitative morphometric analysis of adult teleost fish by x-ray computed tomography. Sci. Rep. 8(1), 1\u201312 (2018)","journal-title":"Sci. Rep."},{"key":"31_CR38","doi-asserted-by":"crossref","unstructured":"Xu, Z., Li, B., Yuan, Y., Geng, M.: Anchorface: an anchor-based facial landmark detector across large poses. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3092\u20133100 (2021)","DOI":"10.1609\/aaai.v35i4.16418"},{"issue":"1","key":"31_CR39","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-021-87141-x","volume":"11","author":"YC Yeh","year":"2021","unstructured":"Yeh, Y.C., Weng, C.H., Huang, Y.J., Fu, C.J., Tsai, T.T., Yeh, C.Y.: Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. Sci. Rep. 11(1), 1\u201315 (2021)","journal-title":"Sci. Rep."}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25069-9_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T12:55:22Z","timestamp":1709816122000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25069-9_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031250682","9783031250699"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25069-9_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"14 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"From the workshops, 367 reviewed full papers have been selected for publication","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}