{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T04:03:56Z","timestamp":1728965036892},"publisher-location":"Cham","reference-count":58,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031250620"},{"type":"electronic","value":"9783031250637"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-25063-7_41","type":"book-chapter","created":{"date-parts":[[2023,2,15]],"date-time":"2023-02-15T20:10:15Z","timestamp":1676491815000},"page":"651-668","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":18,"title":["HST: Hierarchical Swin Transformer for\u00a0Compressed Image Super-Resolution"],"prefix":"10.1007","author":[{"given":"Bingchen","family":"Li","sequence":"first","affiliation":[]},{"given":"Xin","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yiting","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Sen","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Ruoyu","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Zhibo","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,16]]},"reference":[{"key":"41_CR1","doi-asserted-by":"crossref","unstructured":"Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126\u2013135 (2017)","DOI":"10.1109\/CVPRW.2017.150"},{"key":"41_CR2","unstructured":"Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"41_CR3","doi-asserted-by":"crossref","unstructured":"Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)","DOI":"10.5244\/C.26.135"},{"issue":"9","key":"41_CR4","doi-asserted-by":"publisher","first-page":"1463","DOI":"10.1109\/JPROC.2020.3043399","volume":"109","author":"B Bross","year":"2021","unstructured":"Bross, B., Chen, J., Ohm, J.R., Sullivan, G.J., Wang, Y.K.: Developments in international video coding standardization after AVC, with an overview of versatile video coding (VVC). Proc. IEEE 109(9), 1463\u20131493 (2021)","journal-title":"Proc. IEEE"},{"key":"41_CR5","doi-asserted-by":"crossref","unstructured":"Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3086\u20133095 (2019)","DOI":"10.1109\/ICCV.2019.00318"},{"key":"41_CR6","doi-asserted-by":"crossref","unstructured":"Cavigelli, L., Hager, P., Benini, L.: CAS-CNN: a deep convolutional neural network for image compression artifact suppression. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 752\u2013759. IEEE (2017)","DOI":"10.1109\/IJCNN.2017.7965927"},{"key":"41_CR7","doi-asserted-by":"crossref","unstructured":"Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 168\u2013172. IEEE (1994)","DOI":"10.1109\/ICIP.1994.413553"},{"key":"41_CR8","doi-asserted-by":"crossref","unstructured":"Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299\u201312310 (2021)","DOI":"10.1109\/CVPR46437.2021.01212"},{"key":"41_CR9","doi-asserted-by":"crossref","unstructured":"Chen, Y., et al.: Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3435\u20133444 (2019)","DOI":"10.1109\/ICCV.2019.00353"},{"key":"41_CR10","doi-asserted-by":"crossref","unstructured":"Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065\u201311074 (2019)","DOI":"10.1109\/CVPR.2019.01132"},{"key":"41_CR11","doi-asserted-by":"crossref","unstructured":"Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 576\u2013584 (2015)","DOI":"10.1109\/ICCV.2015.73"},{"issue":"2","key":"41_CR12","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","volume":"38","author":"C Dong","year":"2015","unstructured":"Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295\u2013307 (2015)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"41_CR13","doi-asserted-by":"crossref","unstructured":"Fu, X., Zha, Z.J., Wu, F., Ding, X., Paisley, J.: JPEG artifacts reduction via deep convolutional sparse coding. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 2501\u20132510 (2019)","DOI":"10.1109\/ICCV.2019.00259"},{"key":"41_CR14","doi-asserted-by":"crossref","unstructured":"Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1604\u20131613 (2019)","DOI":"10.1109\/CVPR.2019.00170"},{"key":"41_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"628","DOI":"10.1007\/978-3-319-46448-0_38","volume-title":"Computer Vision \u2013 ECCV 2016","author":"J Guo","year":"2016","unstructured":"Guo, J., Chao, H.: Building dual-domain representations for compression artifacts reduction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 628\u2013644. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_38"},{"key":"41_CR16","doi-asserted-by":"crossref","unstructured":"Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197\u20135206 (2015)","DOI":"10.1109\/CVPR.2015.7299156"},{"key":"41_CR17","doi-asserted-by":"crossref","unstructured":"Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 466\u2013467 (2020)","DOI":"10.1109\/CVPRW50498.2020.00241"},{"key":"41_CR18","unstructured":"Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. arXiv preprint arXiv:1807.00734 (2018)"},{"key":"41_CR19","doi-asserted-by":"crossref","unstructured":"Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637\u20131645 (2016)","DOI":"10.1109\/CVPR.2016.181"},{"key":"41_CR20","doi-asserted-by":"crossref","unstructured":"Kim, J., Choi, Y., Uh, Y.: Feature statistics mixing regularization for generative adversarial networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11294\u201311303 (2022)","DOI":"10.1109\/CVPR52688.2022.01101"},{"key":"41_CR21","doi-asserted-by":"crossref","unstructured":"Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681\u20134690 (2017)","DOI":"10.1109\/CVPR.2017.19"},{"key":"41_CR22","unstructured":"Li, X., Jin, X., Fu, J., Yu, X., Tong, B., Chen, Z.: Few-shot real image restoration via distortion-relation guided transfer learning. arXiv preprint arXiv:2111.13078 (2021)"},{"key":"41_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"313","DOI":"10.1007\/978-3-030-58526-6_19","volume-title":"Computer Vision \u2013 ECCV 2020","author":"X Li","year":"2020","unstructured":"Li, X., et al.: Learning disentangled feature representation for hybrid-distorted image restoration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 313\u2013329. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58526-6_19"},{"key":"41_CR24","doi-asserted-by":"crossref","unstructured":"Li, X., et al.: Learning omni-frequency region-adaptive representations for real image super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1975\u20131983 (2021)","DOI":"10.1609\/aaai.v35i3.16293"},{"key":"41_CR25","doi-asserted-by":"publisher","first-page":"6307","DOI":"10.1109\/TIP.2021.3091909","volume":"30","author":"X Li","year":"2021","unstructured":"Li, X., Shi, J., Chen, Z.: Task-driven semantic coding via reinforcement learning. IEEE Trans. Image Process. 30, 6307\u20136320 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"41_CR26","doi-asserted-by":"crossref","unstructured":"Li, X., Sun, S., Zhang, Z., Chen, Z.: Multi-scale grouped dense network for VVC intra coding. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 158\u2013159 (2020)","DOI":"10.1109\/CVPRW50498.2020.00087"},{"key":"41_CR27","doi-asserted-by":"crossref","unstructured":"Li, Y., Jin, P., Yang, F., Liu, C., Yang, M.H., Milanfar, P.: COMISR: compression-informed video super-resolution. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 2543\u20132552 (2021)","DOI":"10.1109\/ICCV48922.2021.00254"},{"key":"41_CR28","doi-asserted-by":"crossref","unstructured":"Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using Swin transformer. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1833\u20131844 (2021)","DOI":"10.1109\/ICCVW54120.2021.00210"},{"key":"41_CR29","doi-asserted-by":"crossref","unstructured":"Liang, J., Zhang, K., Gu, S., Van Gool, L., Timofte, R.: Flow-based kernel prior with application to blind super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10601\u201310610 (2021)","DOI":"10.1109\/CVPR46437.2021.01046"},{"key":"41_CR30","doi-asserted-by":"crossref","unstructured":"Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition Workshops, pp. 136\u2013144 (2017)","DOI":"10.1109\/CVPRW.2017.151"},{"key":"41_CR31","doi-asserted-by":"crossref","unstructured":"Liu, J., Li, X., Peng, Y., Yu, T., Chen, Z.: SwinIQA: learned Swin distance for compressed image quality assessment. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1795\u20131799 (2022)","DOI":"10.1109\/CVPRW56347.2022.00194"},{"key":"41_CR32","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"616","DOI":"10.1007\/978-3-030-58523-5_36","volume-title":"Computer Vision \u2013 ECCV 2020","author":"J Liu","year":"2020","unstructured":"Liu, J., Lin, J., Li, X., Zhou, W., Liu, S., Chen, Z.: LIRA: lifelong image restoration from unknown blended distortions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 616\u2013632. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58523-5_36"},{"key":"41_CR33","doi-asserted-by":"publisher","first-page":"74973","DOI":"10.1109\/ACCESS.2019.2921451","volume":"7","author":"P Liu","year":"2019","unstructured":"Liu, P., Zhang, H., Lian, W., Zuo, W.: Multi-level wavelet convolutional neural networks. IEEE Access 7, 74973\u201374985 (2019)","journal-title":"IEEE Access"},{"key":"41_CR34","unstructured":"Lu, M., Chen, T., Liu, H., Ma, Z.: Learned image restoration for VVC intra coding. In: CVPR Workshops (2019)"},{"key":"41_CR35","doi-asserted-by":"crossref","unstructured":"Lu, Y., et al.: RTN: reinforced transformer network for coronary CT angiography vessel-level image quality assessment. arXiv preprint arXiv:2207.06177 (2022)","DOI":"10.1007\/978-3-031-16431-6_61"},{"key":"41_CR36","doi-asserted-by":"crossref","unstructured":"Luo, Z., Huang, H., Yu, L., Li, Y., Fan, H., Liu, S.: Deep constrained least squares for blind image super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 17642\u201317652 (2022)","DOI":"10.1109\/CVPR52688.2022.01712"},{"key":"41_CR37","doi-asserted-by":"crossref","unstructured":"Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416\u2013423. IEEE (2001)","DOI":"10.1109\/ICCV.2001.937655"},{"issue":"20","key":"41_CR38","doi-asserted-by":"publisher","first-page":"21811","DOI":"10.1007\/s11042-016-4020-z","volume":"76","author":"Y Matsui","year":"2017","unstructured":"Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 76(20), 21811\u201321838 (2017)","journal-title":"Multimed. Tools Appl."},{"key":"41_CR39","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"468","DOI":"10.1007\/978-3-030-67070-2_28","volume-title":"Computer Vision \u2013 ECCV 2020 Workshops","author":"Y Pang","year":"2020","unstructured":"Pang, Y., et al.: FAN: frequency aggregation network for real image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 468\u2013483. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-67070-2_28"},{"key":"41_CR40","doi-asserted-by":"crossref","unstructured":"Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer Science & Business Media, New York (1992). https:\/\/link.springer.com\/book\/9780442012724","DOI":"10.1117\/12.48892"},{"issue":"1","key":"41_CR41","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/S0923-5965(01)00024-8","volume":"17","author":"M Rabbani","year":"2002","unstructured":"Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal Process. Image Commun. 17(1), 3\u201348 (2002)","journal-title":"Signal Process. Image Commun."},{"key":"41_CR42","doi-asserted-by":"crossref","unstructured":"Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874\u20131883 (2016)","DOI":"10.1109\/CVPR.2016.207"},{"key":"41_CR43","unstructured":"Svoboda, P., Hradis, M., Barina, D., Zemcik, P.: Compression artifacts removal using convolutional neural networks. arXiv preprint arXiv:1605.00366 (2016)"},{"key":"41_CR44","doi-asserted-by":"crossref","unstructured":"Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114\u2013125 (2017)","DOI":"10.1109\/CVPRW.2017.150"},{"key":"41_CR45","doi-asserted-by":"crossref","unstructured":"Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581\u201310590 (2021)","DOI":"10.1109\/CVPR46437.2021.01044"},{"key":"41_CR46","doi-asserted-by":"crossref","unstructured":"Wang, X., Xie, L., Dong, C., Shan, Y.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1905\u20131914 (2021)","DOI":"10.1109\/ICCVW54120.2021.00217"},{"key":"41_CR47","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)","DOI":"10.1007\/978-3-030-11021-5_5"},{"key":"41_CR48","doi-asserted-by":"crossref","unstructured":"Wang, Z., Liu, D., Chang, S., Ling, Q., Yang, Y., Huang, T.S.: D3: deep dual-domain based fast restoration of JPEG-compressed images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2764\u20132772 (2016)","DOI":"10.1109\/CVPR.2016.302"},{"key":"41_CR49","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"392","DOI":"10.1007\/978-3-030-67070-2_24","volume-title":"Computer Vision \u2013 ECCV 2020 Workshops","author":"P Wei","year":"2020","unstructured":"Wei, P., et al.: AIM 2020 challenge on real image super-resolution: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 392\u2013422. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-67070-2_24"},{"key":"41_CR50","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1007\/978-3-030-58598-3_7","volume-title":"Computer Vision \u2013 ECCV 2020","author":"P Wei","year":"2020","unstructured":"Wei, P., et al.: Component divide-and-conquer for real-world image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 101\u2013117. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58598-3_7"},{"key":"41_CR51","unstructured":"Wu, Y., Wang, X., Li, G., Shan, Y.: AnimeSR: learning real-world super-resolution models for animation videos. arXiv preprint arXiv:2206.07038 (2022)"},{"key":"41_CR52","doi-asserted-by":"publisher","first-page":"3978","DOI":"10.1109\/TCSVT.2021.3119660","volume":"32","author":"Y Wu","year":"2021","unstructured":"Wu, Y., Li, X., Zhang, Z., Jin, X., Chen, Z.: Learned block-based hybrid image compression. IEEE Trans. Circ. Syst. Video Technol. 32, 3978\u20133990 (2021)","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"41_CR53","unstructured":"Yang, R., Timofte, R., et al.: AIM 2022 challenge on super-resolution of compressed image and video: dataset, methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)"},{"key":"41_CR54","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"711","DOI":"10.1007\/978-3-642-27413-8_47","volume-title":"Curves and Surfaces","author":"R Zeyde","year":"2012","unstructured":"Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711\u2013730. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-27413-8_47"},{"key":"41_CR55","doi-asserted-by":"crossref","unstructured":"Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 4791\u20134800 (2021)","DOI":"10.1109\/ICCV48922.2021.00475"},{"key":"41_CR56","doi-asserted-by":"crossref","unstructured":"Zhang, X., Yang, W., Hu, Y., Liu, J.: DMCNN: dual-domain multi-scale convolutional neural network for compression artifacts removal. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 390\u2013394. IEEE (2018)","DOI":"10.1109\/ICIP.2018.8451694"},{"key":"41_CR57","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"294","DOI":"10.1007\/978-3-030-01234-2_18","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Y Zhang","year":"2018","unstructured":"Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294\u2013310. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_18"},{"key":"41_CR58","doi-asserted-by":"crossref","unstructured":"Zheng, M., et al.: Progressive training of a two-stage framework for video restoration. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1024\u20131031 (2022)","DOI":"10.1109\/CVPRW56347.2022.00115"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25063-7_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T09:55:48Z","timestamp":1728899748000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25063-7_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031250620","9783031250637"],"references-count":58,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25063-7_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"16 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"From the workshops, 367 reviewed full papers have been selected for publication","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}