{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:56:10Z","timestamp":1726188970998},"publisher-location":"Cham","reference-count":36,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031243363"},{"type":"electronic","value":"9783031243370"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-24337-0_41","type":"book-chapter","created":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:02:40Z","timestamp":1677326560000},"page":"583-594","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Automatic Detection of\u00a0Parallel Sentences from\u00a0Comparable Biomedical Texts"],"prefix":"10.1007","author":[{"given":"R\u00e9mi","family":"Cardon","sequence":"first","affiliation":[]},{"given":"Natalia","family":"Grabar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,26]]},"reference":[{"unstructured":"Koehn, P.: Europarl: a parallel corpus for statistical machine translation. In: Conference Proceedings: The Tenth Machine Translation Summit, pp. 79\u201386. Phuket, Thailand, AAMT, AAMT (2005)","key":"41_CR1"},{"key":"41_CR2","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1007\/978-3-319-05476-6_4","volume-title":"Intelligent Information and Database Systems","author":"TT Vu","year":"2014","unstructured":"Vu, T.T., Tran, G.B., Pham, S.B.: Learning to simplify children stories with limited data. In: Nguyen, N.T., Attachoo, B., Trawi\u0144ski, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8397, pp. 31\u201341. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-05476-6_4"},{"unstructured":"Paetzold, G.H., Specia, L.: Benchmarking lexical simplification systems. In: LREC, pp. 3074\u20133080 (2016)","key":"41_CR3"},{"doi-asserted-by":"crossref","unstructured":"Chen, P., Rochford, J., Kennedy, D.N., Djamasbi, S., Fay, P., Scott, W.: Automatic text simplification for people with intellectual disabilities. In: AIST, pp. 1\u20139 (2016)","key":"41_CR4","DOI":"10.1142\/9789813206823_0091"},{"key":"41_CR5","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1016\/j.ijmedinf.2013.03.001","volume":"82","author":"G Leroy","year":"2013","unstructured":"Leroy, G., Kauchak, D., Mouradi, O.: A user-study measuring the effects of lexical simplification and coherence enhancement on perceived and actual text difficulty. Int. J. Med. Inform. 82, 717\u2013730 (2013)","journal-title":"Int. J. Med. Inform."},{"doi-asserted-by":"crossref","unstructured":"AMA: Health literacy: report of the council on scientific affairs. Ad hoc committee on health literacy for the council on scientific affairs, American Medical Association. JAMA, 281, 552\u2013557 (1999)","key":"41_CR6","DOI":"10.1001\/jama.281.6.552"},{"key":"41_CR7","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1197\/jamia.M1687","volume":"12","author":"A Mcgray","year":"2005","unstructured":"Mcgray, A.: Promoting health literacy. J. Am. Med. Inform. Assoc. 12, 152\u2013163 (2005)","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"41_CR8","doi-asserted-by":"publisher","first-page":"1004","DOI":"10.1177\/1359105312470128","volume":"18","author":"E Rudd","year":"2013","unstructured":"Rudd, E.: Needed action in health literacy. J. Health Psychol. 18, 1004\u201310 (2013)","journal-title":"J. Health Psychol."},{"doi-asserted-by":"crossref","unstructured":"Grabar, N., Cardon, R.: CLEAR - Simple corpus for medical French. In: Workshop on Automatic Text Adaption (ATA), pp. 1\u201311 (2018)","key":"41_CR9","DOI":"10.18653\/v1\/W18-7002"},{"unstructured":"Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., Guo, W.: *SEM 2013 shared task: semantic textual similarity. In: *SEM, pp. 32\u201343 (2013)","key":"41_CR10"},{"key":"41_CR11","first-page":"252","volume":"2015","author":"E Agirre","year":"2015","unstructured":"Agirre, E., et al.: SemEval-2015 task 2: semantic textual similarity, English, Spanish and pilot on interpretability. SemEval 2015, 252\u2013263 (2015)","journal-title":"SemEval"},{"key":"41_CR12","first-page":"497","volume":"2016","author":"E Agirre","year":"2016","unstructured":"Agirre, E., et al.: SemEval-2016 task 1: semantic textual similarity, monolingual and cross-lingual evaluation. SemEval 2016, 497\u2013511 (2016)","journal-title":"SemEval"},{"unstructured":"Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation metrics for paraphrase identification. In: NAACL-HLT, pp. 182\u2013190 (2012)","key":"41_CR13"},{"doi-asserted-by":"crossref","unstructured":"Clough, P., Gaizauskas, R., Piao, S.S., Wilks, Y.: METER: Measuring text reuse. In: ACL, pp. 152\u2013159 (2002)","key":"41_CR14","DOI":"10.3115\/1073083.1073110"},{"unstructured":"Zhang, Y., Patrick, J.: Paraphrase identification by text canonicalization. In: Australasian Language Technology Workshop, pp. 160\u2013166 (2005)","key":"41_CR15"},{"doi-asserted-by":"crossref","unstructured":"Qiu, L., Kan, M.Y., Chua, T.S.: Paraphrase recognition via dissimilarity significance classification. In: Empirical Methods in Natural Language Processing, pp. 18\u201326. Sydney, Australia (2006)","key":"41_CR16","DOI":"10.3115\/1610075.1610079"},{"unstructured":"Nelken, R., Shieber, S.M.: Towards robust context-sensitive sentence alignment for monolingual corpora. In: EACL, 161\u2013168 (2006)","key":"41_CR17"},{"key":"41_CR18","first-page":"1353","volume":"2010","author":"Z Zhu","year":"2010","unstructured":"Zhu, Z., Bernhard, D., Gurevych, I.: A monolingual tree-based translation model for sentence simplification. COLING 2010, 1353\u20131361 (2010)","journal-title":"COLING"},{"doi-asserted-by":"crossref","unstructured":"Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to wordnet: An on-line lexical database. Technical report, WordNet (1993)","key":"41_CR19","DOI":"10.3115\/1075671.1075788"},{"unstructured":"Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB: the paraphrase database. In: NAACL-HLT, pp. 758\u2013764 (2013)","key":"41_CR20"},{"unstructured":"Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI, pp. 1\u20136 (2006)","key":"41_CR21"},{"unstructured":"Fernando, S., Stevenson, M.: A semantic similarity approach to paraphrase detection. In: Comp Ling UK, pp. 1\u20137 (2008)","key":"41_CR22"},{"doi-asserted-by":"crossref","unstructured":"Lai, A., Hockenmaier, J.: Illinois-LH: a denotational and distributional approach to semantics. In: Workshop on Semantic Evaluation (SemEval 2014), pp. 239\u2013334. Dublin, Ireland (2014)","key":"41_CR23","DOI":"10.3115\/v1\/S14-2055"},{"unstructured":"Wan, S., Dras, M., Dale, R., Paris, C.: Using dependency-based features to take the \u201cpara-farce\u201d out of paraphrase. In: Australasian Language Technology Workshop, pp. 131\u2013138 (2006)","key":"41_CR24"},{"unstructured":"Severyn, A., Nicosia, M., Moschitti, A.: Learning semantic textual similarity with structural representations. In: Annual Meeting of the Association for Computational Linguistics, pp. 714\u2013718 (2013)","key":"41_CR25"},{"doi-asserted-by":"crossref","unstructured":"Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Annual Meeting of the Association for Computational Linguistics, pp. 1556\u20131566. Beijing, China (2015)","key":"41_CR26","DOI":"10.3115\/v1\/P15-1150"},{"doi-asserted-by":"crossref","unstructured":"Tsubaki, M., Duh, K., Shimbo, M., Matsumoto, Y.: Non-linear similarity learning for compositionality. In: AAAI Conference on Artificial Intelligence, pp. 2828\u20132834 (2016)","key":"41_CR27","DOI":"10.1609\/aaai.v30i1.10356"},{"doi-asserted-by":"crossref","unstructured":"Barzilay, R., Elhadad, N.: Sentence alignment for monolingual comparable corpora. In: EMNLP, pp. 25\u201332 (2003)","key":"41_CR28","DOI":"10.3115\/1119355.1119359"},{"unstructured":"Guo, W., Diab, M.: Modeling sentences in the latent space. In: ACL, pp. 864\u2013872 (2012)","key":"41_CR29"},{"doi-asserted-by":"crossref","unstructured":"Zhao, J., Zhu, T.T., Lan, M.: ECNU: one stone two birds: ensemble of heterogenous measures for semantic relatedness and textual entailment. In: Workshop on Semantic Evaluation (SemEval 2014), pp. 271\u2013277 (2014)","key":"41_CR30","DOI":"10.3115\/v1\/S14-2044"},{"unstructured":"Kiros, R., et al.: Skip-thought vectors. In: Neural Information Processing Systems (NIPS), pp. 3294\u20133302 (2015)","key":"41_CR31"},{"doi-asserted-by":"crossref","unstructured":"He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with convolutional neural networks. In: EMNLP, pp. 1576\u20131586. Lisbon, Portugal (2015)","key":"41_CR32","DOI":"10.18653\/v1\/D15-1181"},{"doi-asserted-by":"crossref","unstructured":"Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: AAAI Conference on Artificial Intelligence, pp. 2786\u20132792 (2016)","key":"41_CR33","DOI":"10.1609\/aaai.v30i1.10350"},{"key":"41_CR34","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1136\/bmj.312.7023.71","volume":"312","author":"DL Sackett","year":"1996","unstructured":"Sackett, D.L., Rosenberg, W.M.C., MuirGray, J.A., Haynes, R.B., Richardson, W.S.: Evidence based medicine: what it is and what it isn\u2019t. BMJ 312, 71\u20132 (1996)","journal-title":"BMJ"},{"key":"41_CR35","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1177\/001316446002000104","volume":"20","author":"J Cohen","year":"1960","unstructured":"Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20, 37\u201346 (1960)","journal-title":"Educ. Psychol. Measur."},{"unstructured":"Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. In: Soviet Physics. Doklady, p. 707 (1966)","key":"41_CR36"}],"container-title":["Lecture Notes in Computer Science","Computational Linguistics and Intelligent Text Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-24337-0_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:13:30Z","timestamp":1677327210000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-24337-0_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031243363","9783031243370"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-24337-0_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"26 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CICLing","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Linguistics and Intelligent Text Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"La Rochelle","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 April 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 April 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cicling2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.cicling.org\/2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"335","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"95","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}