{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:56:02Z","timestamp":1726188962503},"publisher-location":"Cham","reference-count":36,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031243363"},{"type":"electronic","value":"9783031243370"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-24337-0_29","type":"book-chapter","created":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:02:40Z","timestamp":1677326560000},"page":"391-405","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Cross-Lingual Transfer for\u00a0Distantly Supervised and\u00a0Low-Resources Indonesian NER"],"prefix":"10.1007","author":[{"given":"Fariz","family":"Ikhwantri","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,26]]},"reference":[{"key":"29_CR1","doi-asserted-by":"crossref","unstructured":"Alfina, I., Manurung, R., Fanany, M.I.: DBpedia entities expansion in automatically building dataset for Indonesian NER. In: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 335\u2013340 (2016)","DOI":"10.1109\/ICACSIS.2016.7872784"},{"key":"29_CR2","doi-asserted-by":"crossref","unstructured":"Alfina, I., Savitri, S., Fanany, M.I.: Modified DBpedia entities expansion for tagging automatically NER dataset. In: 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 216\u2013221 (2017)","DOI":"10.1109\/ICACSIS.2017.8355036"},{"key":"29_CR3","doi-asserted-by":"crossref","unstructured":"Balasuriya, D., Ringland, N., Nothman, J., Murphy, T., Curran, J.R.: Named entity recognition in Wikipedia. In: Proceedings of the 2009 Workshop on The People\u2019s Web Meets NLP: Collaboratively Constructed Semantic Resources, pp. 10\u201318. People\u2019s Web 2009, Association for Computational Linguistics, Stroudsburg, PA, USA (2009)","DOI":"10.3115\/1699765.1699767"},{"key":"29_CR4","doi-asserted-by":"crossref","unstructured":"Blevins, T., Levy, O., Zettlemoyer, L.: Deep RNNs encode soft hierarchical syntax. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 14\u201319. Association for Computational Linguistics (2018). http:\/\/aclweb.org\/anthology\/P18-2003","DOI":"10.18653\/v1\/P18-2003"},{"key":"29_CR5","doi-asserted-by":"crossref","unstructured":"Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: EMNLP (2015)","DOI":"10.18653\/v1\/D15-1075"},{"key":"29_CR6","doi-asserted-by":"crossref","unstructured":"Chelba, C., et al.: One billion word benchmark for measuring progress in statistical language modeling (2013)","DOI":"10.21437\/Interspeech.2014-564"},{"key":"29_CR7","unstructured":"Cotterell, R., Duh, K.: Low-resource named entity recognition with cross-lingual, character-level neural conditional random fields. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 91\u201396. Asian Federation of Natural Language Processing (2017). http:\/\/aclweb.org\/anthology\/I17-2016"},{"key":"29_CR8","doi-asserted-by":"crossref","unstructured":"Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363\u2013370. Association for Computational Linguistics (2005). http:\/\/www.aclweb.org\/anthology\/P05-1045","DOI":"10.3115\/1219840.1219885"},{"key":"29_CR9","doi-asserted-by":"crossref","unstructured":"Gardner, M., et al.: AllenNLP: a deep semantic natural language processing platform (2017). arXiv:1803.07640","DOI":"10.18653\/v1\/W18-2501"},{"key":"29_CR10","doi-asserted-by":"crossref","unstructured":"Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 328\u2013339. Association for Computational Linguistics (2018). http:\/\/aclweb.org\/anthology\/P18-1031","DOI":"10.18653\/v1\/P18-1031"},{"key":"29_CR11","unstructured":"Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits of language modeling (2016). https:\/\/arxiv.org\/pdf\/1602.02410.pdf"},{"key":"29_CR12","doi-asserted-by":"crossref","unstructured":"Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 2741\u20132749. AAAI Press (2016)","DOI":"10.1609\/aaai.v30i1.10362"},{"key":"29_CR13","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs\/1412.6980 (2014)"},{"key":"29_CR14","unstructured":"Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Proceedings of the 4th International Conference on Neural Information Processing Systems (NIPS 1991), pp. 950\u2013957. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1991). http:\/\/dl.acm.org\/citation.cfm?id=2986916.2987033"},{"key":"29_CR15","doi-asserted-by":"crossref","unstructured":"Kurniawan, K., Aji, A.F.: Toward a standardized and more accurate Indonesian part-of-speech tagging (2018)","DOI":"10.1109\/IALP.2018.8629236"},{"key":"29_CR16","doi-asserted-by":"crossref","unstructured":"Kurniawan, K., Louvan, S.: Empirical evaluation of character-based model on neural named-entity recognition in Indonesian conversational texts. In: Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-Generated Text, pp. 85\u201392. Association for Computational Linguistics (2018). http:\/\/aclweb.org\/anthology\/W18-6112","DOI":"10.18653\/v1\/W18-6112"},{"key":"29_CR17","doi-asserted-by":"crossref","unstructured":"Kurniawan, K., Louvan, S.: Empirical evaluation of character-based model on neural named-entity recognition in Indonesian conversational texts. CoRR abs\/1805.12291 (2018). http:\/\/arxiv.org\/abs\/1805.12291","DOI":"10.18653\/v1\/W18-6112"},{"key":"29_CR18","doi-asserted-by":"publisher","unstructured":"Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1064\u20131074. Association for Computational Linguistics (2016). https:\/\/doi.org\/10.18653\/v1\/P16-1101, http:\/\/aclweb.org\/anthology\/P16-1101","DOI":"10.18653\/v1\/P16-1101"},{"key":"29_CR19","doi-asserted-by":"publisher","unstructured":"Ni, J., Dinu, G., Florian, R.: Weakly supervised cross-lingual named entity recognition via effective annotation and representation projection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1470\u20131480. Association for Computational Linguistics (2017). https:\/\/doi.org\/10.18653\/v1\/P17-1135, http:\/\/aclweb.org\/anthology\/P17-1135","DOI":"10.18653\/v1\/P17-1135"},{"key":"29_CR20","unstructured":"Nothman, J., Curran, J.R., Murphy, T.: Transforming Wikipedia into named entity training data. In: 2008 Proceedings of the Australasian Language Technology Association Workshop, pp. 124\u2013132 (2008). http:\/\/www.aclweb.org\/anthology\/U08-1016"},{"key":"29_CR21","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1162\/0891201053630264","volume":"31","author":"M Palmer","year":"2005","unstructured":"Palmer, M., Kingsbury, P., Gildea, D.: The proposition bank: an annotated corpus of semantic roles. Comput. Linguist. 31, 71\u2013106 (2005)","journal-title":"Comput. Linguist."},{"key":"29_CR22","doi-asserted-by":"publisher","unstructured":"Pan, X., Zhang, B., May, J., Nothman, J., Knight, K., Ji, H.: Cross-lingual name tagging and linking for 282 languages. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1946\u20131958. Association for Computational Linguistics (2017). https:\/\/doi.org\/10.18653\/v1\/P17-1178, http:\/\/aclweb.org\/anthology\/P17-1178","DOI":"10.18653\/v1\/P17-1178"},{"key":"29_CR23","doi-asserted-by":"publisher","unstructured":"Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543. Association for Computational Linguistics (2014). https:\/\/doi.org\/10.3115\/v1\/D14-1162, http:\/\/www.aclweb.org\/anthology\/D14-1162","DOI":"10.3115\/v1\/D14-1162"},{"key":"29_CR24","unstructured":"Perone, C.S., Silveira, R., Paula, T.S.: Evaluation of sentence embeddings in downstream and linguistic probing tasks. CoRR abs\/1806.06259 (2018)"},{"key":"29_CR25","doi-asserted-by":"publisher","unstructured":"Peters, M., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence tagging with bidirectional language models. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1756\u20131765. Association for Computational Linguistics (2017). https:\/\/doi.org\/10.18653\/v1\/P17-1161, http:\/\/aclweb.org\/anthology\/P17-1161","DOI":"10.18653\/v1\/P17-1161"},{"key":"29_CR26","doi-asserted-by":"crossref","unstructured":"Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of the NAACL (2018)","DOI":"10.18653\/v1\/N18-1202"},{"key":"29_CR27","doi-asserted-by":"publisher","unstructured":"Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383\u20132392. Association for Computational Linguistics (2016). https:\/\/doi.org\/10.18653\/v1\/D16-1264, http:\/\/www.aclweb.org\/anthology\/D16-1264","DOI":"10.18653\/v1\/D16-1264"},{"key":"29_CR28","doi-asserted-by":"crossref","unstructured":"Rashel, F., Luthfi, A., Dinakaramani, A., Manurung, R.: Building an Indonesian rule-based part-of-speech tagger. In: 2014 International Conference on Asian Language Processing (IALP), pp. 70\u201373 (2014)","DOI":"10.1109\/IALP.2014.6973521"},{"key":"29_CR29","doi-asserted-by":"publisher","unstructured":"Rei, M.: Semi-supervised multitask learning for sequence labeling. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2121\u20132130. Association for Computational Linguistics (2017). https:\/\/doi.org\/10.18653\/v1\/P17-1194, http:\/\/www.aclweb.org\/anthology\/P17-1194","DOI":"10.18653\/v1\/P17-1194"},{"key":"29_CR30","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1080\/09540099550039318","volume":"7","author":"AV Robins","year":"1995","unstructured":"Robins, A.V.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7, 123\u2013146 (1995)","journal-title":"Connect. Sci."},{"key":"29_CR31","unstructured":"Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631\u20131642. Association for Computational Linguistics (2013). http:\/\/www.aclweb.org\/anthology\/D13-1170"},{"key":"29_CR32","unstructured":"Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks (2015)"},{"key":"29_CR33","unstructured":"Tala, F.Z.: A study of stemming effects on information retrieval in Bahasa Indonesia. Language and Computation, Universiteit van Amsterdam, The Netherlands, Institute for Logic (2003)"},{"key":"29_CR34","doi-asserted-by":"crossref","unstructured":"Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: 2003 Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL (CONLL 2003), vol. 4, pp. 142\u2013147. Association for Computational Linguistics, Stroudsburg, PA, USA (2003)","DOI":"10.3115\/1119176.1119195"},{"key":"29_CR35","doi-asserted-by":"crossref","unstructured":"Xie, J., Yang, Z., Neubig, G., Smith, N.A., Carbonell, J.: Neural cross-lingual named entity recognition with minimal resources. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 369\u2013379. Association for Computational Linguistics (2018). http:\/\/aclweb.org\/anthology\/D18-1034","DOI":"10.18653\/v1\/D18-1034"},{"key":"29_CR36","unstructured":"Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging with hierarchical recurrent networks. CoRR abs\/1703.06345 (2016)"}],"container-title":["Lecture Notes in Computer Science","Computational Linguistics and Intelligent Text Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-24337-0_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:11:44Z","timestamp":1677327104000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-24337-0_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031243363","9783031243370"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-24337-0_29","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"26 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CICLing","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Linguistics and Intelligent Text Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"La Rochelle","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 April 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 April 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cicling2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.cicling.org\/2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"335","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"95","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}