{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:56:00Z","timestamp":1726188960977},"publisher-location":"Cham","reference-count":14,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031243363"},{"type":"electronic","value":"9783031243370"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-24337-0_28","type":"book-chapter","created":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:02:40Z","timestamp":1677326560000},"page":"380-390","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["SART - Similarity, Analogies, and\u00a0Relatedness for\u00a0Tatar Language: New Benchmark Datasets for\u00a0Word Embeddings Evaluation"],"prefix":"10.1007","author":[{"given":"Albina","family":"Khusainova","sequence":"first","affiliation":[]},{"given":"Adil","family":"Khan","sequence":"additional","affiliation":[]},{"given":"Ad\u00edn Ram\u00edrez","family":"Rivera","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,26]]},"reference":[{"key":"28_CR1","doi-asserted-by":"crossref","unstructured":"Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., Soroa, A.: A study on similarity and relatedness using distributional and wordnet-based approaches. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 19\u201327. Association for Computational Linguistics (2009). http:\/\/aclweb.org\/anthology\/N09-1003","DOI":"10.3115\/1620754.1620758"},{"key":"28_CR2","doi-asserted-by":"publisher","unstructured":"Beltagy, I., Erk, K., Mooney, R.: Semantic parsing using distributional semantics and probabilistic logic. In: Proceedings of the ACL 2014 Workshop on Semantic Parsing, pp. 7\u201311. Association for Computational Linguistics (2014). https:\/\/doi.org\/10.3115\/v1\/W14-2402, http:\/\/aclweb.org\/anthology\/W14-2402","DOI":"10.3115\/v1\/W14-2402"},{"key":"28_CR3","unstructured":"Berardi, G., Esuli, A., Marcheggiani, D.: Word embeddings go to italy: a comparison of models and training datasets. In: IIR (2015)"},{"key":"28_CR4","doi-asserted-by":"crossref","unstructured":"Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)","DOI":"10.1162\/tacl_a_00051"},{"key":"28_CR5","unstructured":"Bruni, E., Boleda, G., Baroni, M., Tran, N.K.: Distributional semantics in technicolor. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 136\u2013145. Association for Computational Linguistics (2012). http:\/\/aclweb.org\/anthology\/P12-1015"},{"key":"28_CR6","doi-asserted-by":"publisher","unstructured":"Finkelstein, L., et al.: Placing search in context: the concept revisited. In: Proceedings of the 10th International Conference on World Wide Web, pp. 406\u2013414. WWW 2001, ACM, New York, NY, USA (2001). https:\/\/doi.org\/10.1145\/371920.372094","DOI":"10.1145\/371920.372094"},{"key":"28_CR7","doi-asserted-by":"crossref","unstructured":"He, X., Yang, M., Gao, J., Nguyen, P., Moore, R.: Indirect-hmm-based hypothesis alignment for combining outputs from machine translation systems. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 98\u2013107. Association for Computational Linguistics (2008). http:\/\/aclweb.org\/anthology\/D08-1011","DOI":"10.3115\/1613715.1613730"},{"key":"28_CR8","doi-asserted-by":"publisher","unstructured":"Hill, F., Reichart, R., Korhonen, A.: Simlex-999: evaluating semantic models with (genuine) similarity estimation. Comput. Linguist. 41(4), 665\u2013695 (2015). https:\/\/doi.org\/10.1162\/COLI_a_00237, http:\/\/aclweb.org\/anthology\/J15-4004","DOI":"10.1162\/COLI_a_00237"},{"key":"28_CR9","unstructured":"Leviant, I., Reichart, R.: Judgment language matters: multilingual vector space models for judgment language aware lexical semantics. CoRR, abs\/1508.00106 (2015)"},{"key":"28_CR10","unstructured":"Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)"},{"key":"28_CR11","unstructured":"Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2, pp. 3111\u20133119. NIPS 2013, Curran Associates Inc. USA (2013). http:\/\/dl.acm.org\/citation.cfm?id=2999792.2999959"},{"key":"28_CR12","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543 (2014). http:\/\/www.aclweb.org\/anthology\/D14-1162","DOI":"10.3115\/v1\/D14-1162"},{"issue":"10","key":"28_CR13","doi-asserted-by":"publisher","first-page":"627","DOI":"10.1145\/365628.365657","volume":"8","author":"H Rubenstein","year":"1965","unstructured":"Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627\u2013633 (1965)","journal-title":"Commun. ACM"},{"key":"28_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1007\/978-3-319-75477-2_6","volume-title":"Computational Linguistics and Intelligent Text Processing","author":"L Svoboda","year":"2018","unstructured":"Svoboda, L., Brychc\u00edn, T.: New word analogy corpus for exploring embeddings of Czech words. In: Gelbukh, A. (ed.) CICLing 2016. LNCS, vol. 9623, pp. 103\u2013114. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-75477-2_6"}],"container-title":["Lecture Notes in Computer Science","Computational Linguistics and Intelligent Text Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-24337-0_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:11:17Z","timestamp":1677327077000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-24337-0_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031243363","9783031243370"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-24337-0_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"26 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CICLing","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Linguistics and Intelligent Text Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"La Rochelle","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 April 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 April 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cicling2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.cicling.org\/2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"335","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"95","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}