{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:55:57Z","timestamp":1726188957061},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031243363"},{"type":"electronic","value":"9783031243370"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-24337-0_24","type":"book-chapter","created":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:02:40Z","timestamp":1677326560000},"page":"332-341","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multiplicative Models for\u00a0Recurrent Language Modeling"],"prefix":"10.1007","author":[{"given":"Diego","family":"Maupom\u00e9","sequence":"first","affiliation":[]},{"given":"Marie-Jean","family":"Meurs","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,26]]},"reference":[{"key":"24_CR1","unstructured":"Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. CoRR abs\/1803.01271 (2018). http:\/\/arxiv.org\/abs\/1803.01271"},{"issue":"2","key":"24_CR2","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1109\/72.279181","volume":"5","author":"Y Bengio","year":"1994","unstructured":"Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157\u2013166 (1994)","journal-title":"IEEE Trans. Neural Netw."},{"key":"24_CR3","doi-asserted-by":"crossref","unstructured":"Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)","DOI":"10.3115\/v1\/D14-1179"},{"key":"24_CR4","unstructured":"Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)"},{"key":"24_CR5","unstructured":"Cooijmans, T., Ballas, N., Laurent, C., Courville, A.C.: Recurrent batch normalization. CoRR abs\/1603.09025 (2016). http:\/\/arxiv.org\/abs\/1603.09025"},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"Ghodsi, A., DeNero, J.: An analysis of the ability of statistical language models to capture the structural properties of language. In: Proceedings of the 9th International Natural Language Generation Conference, pp. 227\u2013231 (2016)","DOI":"10.18653\/v1\/W16-6637"},{"key":"24_CR7","unstructured":"Graves, A.: Generating sequences with recurrent neural networks. CoRR abs\/1308.0850 (2013). http:\/\/arxiv.org\/abs\/1308.0850"},{"key":"24_CR8","doi-asserted-by":"crossref","unstructured":"Greff, K., Srivastava, R.K., Koutn\u00edk, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. (2016)","DOI":"10.1109\/TNNLS.2016.2582924"},{"issue":"8","key":"24_CR9","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"24_CR10","unstructured":"Hutter, M.: Human knowledge compression contest (2006). http:\/\/prize.hutter1.net\/"},{"key":"24_CR11","doi-asserted-by":"crossref","unstructured":"Iyyer, M., Boyd-Graber, J., Claudino, L., Socher, R., Daum\u00e9 III, H.: A neural network for factoid question answering over paragraphs. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 633\u2013644 (2014)","DOI":"10.3115\/v1\/D14-1070"},{"key":"24_CR12","unstructured":"Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network architectures. In: Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 2342\u20132350 (2015)"},{"key":"24_CR13","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs\/1412.6980 (2014). http:\/\/arxiv.org\/abs\/1412.6980"},{"key":"24_CR14","unstructured":"Krause, B., Kahembwe, E., Murray, I., Renals, S.: Dynamic evaluation of neural sequence models. CoRR abs\/1709.07432 (2017). http:\/\/arxiv.org\/abs\/1709.07432"},{"key":"24_CR15","unstructured":"Krause, B., Lu, L., Murray, I., Renals, S.: Multiplicative LSTM for sequence modelling. arXiv preprint arXiv:1609.07959 (2016)"},{"key":"24_CR16","doi-asserted-by":"crossref","unstructured":"Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412\u20131421 (2015)","DOI":"10.18653\/v1\/D15-1166"},{"issue":"2","key":"24_CR17","first-page":"313","volume":"19","author":"MP Marcus","year":"1993","unstructured":"Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of English: the Penn treebank. Comput. Linguist. 19(2), 313\u2013330 (1993)","journal-title":"Comput. Linguist."},{"key":"24_CR18","unstructured":"Mikolov, T., Sutskever, I., Deoras, A., Le, H.S., Kombrink, S., Cernocky, J.: Subword language modeling with neural networks. Preprint (2012). http:\/\/www.fit.vutbr.cz\/imikolov\/rnnlm\/char.pdf"},{"key":"24_CR19","unstructured":"Mujika, A., Meier, F., Steger, A.: Fast-slow recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 5917\u20135926 (2017)"},{"key":"24_CR20","unstructured":"Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summarization. CoRR abs\/1705.04304 (2017). http:\/\/arxiv.org\/abs\/1705.04304"},{"key":"24_CR21","unstructured":"Radford, A., J\u00f3zefowicz, R., Sutskever, I.: Learning to generate reviews and discovering sentiment. CoRR abs\/1704.01444 (2017)"},{"key":"24_CR22","unstructured":"Socher, R., Bengio, Y., Manning, C.: Deep learning for NLP. Tutorial at Association of Computational Logistics (ACL), 2012, and North American Chapter of the Association of Computational Linguistics (NAACL) (2013)"},{"key":"24_CR23","unstructured":"Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1017\u20131024 (2011)"},{"key":"24_CR24","doi-asserted-by":"crossref","unstructured":"Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1025\u20131032. ACM (2009)","DOI":"10.1145\/1553374.1553505"}],"container-title":["Lecture Notes in Computer Science","Computational Linguistics and Intelligent Text Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-24337-0_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:11:03Z","timestamp":1677327063000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-24337-0_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031243363","9783031243370"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-24337-0_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"26 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CICLing","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Linguistics and Intelligent Text Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"La Rochelle","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 April 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 April 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cicling2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.cicling.org\/2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"335","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"95","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}