{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T04:07:04Z","timestamp":1729051624861},"publisher-location":"Cham","reference-count":31,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031243363"},{"type":"electronic","value":"9783031243370"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-24337-0_12","type":"book-chapter","created":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T12:02:40Z","timestamp":1677326560000},"page":"155-168","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Char-RNN and\u00a0Active Learning for\u00a0Hashtag Segmentation"],"prefix":"10.1007","author":[{"given":"Taisiya","family":"Glushkova","sequence":"first","affiliation":[]},{"given":"Ekaterina","family":"Artemova","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,26]]},"reference":[{"key":"12_CR1","doi-asserted-by":"crossref","unstructured":"Matthews, A., Schlinger, E., Lavie, A., Dyer, C.: Synthesizing compound words for machine translation. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1085\u20131094 (2016)","DOI":"10.18653\/v1\/P16-1103"},{"key":"12_CR2","doi-asserted-by":"crossref","unstructured":"Riedl, M., Biemann, C.: Unsupervised compound splitting with distributional semantics rivals supervised methods. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 617\u2013622 (2016)","DOI":"10.18653\/v1\/N16-1075"},{"key":"12_CR3","doi-asserted-by":"crossref","unstructured":"Koehn, P., Knight, K.: Empirical methods for compound splitting. In: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics, vol. 1, pp. 187\u2013193 (2003)","DOI":"10.3115\/1067807.1067833"},{"key":"12_CR4","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 6000\u20136010 (2017)"},{"key":"12_CR5","doi-asserted-by":"crossref","unstructured":"Chung, J., Cho, K., Bengio, Y.: A character-level decoder without explicit segmentation for neural machine translation (2016)","DOI":"10.18653\/v1\/P16-1160"},{"key":"12_CR6","unstructured":"Alberti, C., et al.: SyntaxNet models for the CoNLL 2017 shared task (2017)"},{"key":"12_CR7","doi-asserted-by":"crossref","unstructured":"Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: EACL 2017, p. 427 (2017)","DOI":"10.18653\/v1\/E17-2068"},{"key":"12_CR8","unstructured":"Santos, C.D., Zadrozny, B.: Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st International Conference on Machine Learning, ICML 2014, pp. 1818\u20131826 (2014)"},{"key":"12_CR9","doi-asserted-by":"crossref","unstructured":"Samih, Y., et al.: A neural architecture for dialectal Arabic segmentation. In: Proceedings of the Third Arabic Natural Language Processing Workshop, pp. 46\u201354 (2017)","DOI":"10.18653\/v1\/W17-1306"},{"key":"12_CR10","unstructured":"Sun, Z., Shen, G., Deng, Z.: A gap-based framework for Chinese word segmentation via very deep convolutional networks (2017)"},{"key":"12_CR11","doi-asserted-by":"crossref","unstructured":"Cai, D., Zhao, H., Zhang, Z., Xin, Y., Wu, Y., Huang, F.: Fast and accurate neural word segmentation for Chinese (2017)","DOI":"10.18653\/v1\/P17-2096"},{"key":"12_CR12","doi-asserted-by":"crossref","unstructured":"Zhang, Q., Liu, X., Fu, J.: Neural networks incorporating dictionaries for Chinese word segmentation (2018)","DOI":"10.1609\/aaai.v32i1.11959"},{"key":"12_CR13","doi-asserted-by":"crossref","unstructured":"Cai, D., Zhao, H.: Neural word segmentation learning for Chinese. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 409\u2013420 (2016)","DOI":"10.18653\/v1\/P16-1039"},{"key":"12_CR14","doi-asserted-by":"crossref","unstructured":"Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF (2016)","DOI":"10.18653\/v1\/P16-1101"},{"key":"12_CR15","unstructured":"Weston, J., et al.: Towards AI-complete question answering: a set of prerequisite toy tasks (2015)"},{"key":"12_CR16","unstructured":"Utama, P., et al.: An end-to-end neural natural language interface for databases (2018)"},{"key":"12_CR17","unstructured":"Schohn, G., Cohn, D.: Less is more: active learning with support vector machines. In: ICML, pp. 839\u2013846 (2000)"},{"key":"12_CR18","first-page":"45","volume":"2","author":"S Tong","year":"2001","unstructured":"Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45\u201366 (2001)","journal-title":"J. Mach. Learn. Res."},{"key":"12_CR19","doi-asserted-by":"crossref","unstructured":"Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition (2017)","DOI":"10.18653\/v1\/W17-2630"},{"key":"12_CR20","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Lease, M., Wallace, B.C.: Active discriminative text representation learning. In: AAAI, pp. 3386\u20133392 (2017)","DOI":"10.1609\/aaai.v31i1.10962"},{"key":"12_CR21","doi-asserted-by":"publisher","first-page":"23","DOI":"10.5121\/ijnlc.2016.5402","volume":"5","author":"J Reuter","year":"2016","unstructured":"Reuter, J., Pereira-Martins, J., Kalita, J.: Segmenting Twitter hashtags. Int. J. Nat. Lang. Comput. 5, 23\u201336 (2016)","journal-title":"Int. J. Nat. Lang. Comput."},{"key":"12_CR22","doi-asserted-by":"crossref","unstructured":"Berardi, G., Esuli, A., Marcheggiani, D., Sebastiani, F.: ISTI@ TREC Microblog Track 2011: Exploring the Use of Hashtag Segmentation and Text Quality Ranking. TREC (2011)","DOI":"10.6028\/NIST.SP.500-296.microblog-NEMIS_ISTI_CNR"},{"key":"12_CR23","doi-asserted-by":"crossref","unstructured":"Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the TREC-2011 microblog track. In: Proceedings of the 20th Text REtrieval Conference (TREC 2011) (2011)","DOI":"10.6028\/NIST.SP.500-296.microblog-overview"},{"key":"12_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"453","DOI":"10.1007\/978-3-319-16354-3_50","volume-title":"Advances in Information Retrieval","author":"P Bansal","year":"2015","unstructured":"Bansal, P., Bansal, R., Varma, V.: Towards deep semantic analysis of hashtags. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 453\u2013464. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-16354-3_50"},{"key":"12_CR25","unstructured":"Declerck, T., Lendvai, P.: Processing and normalizing hashtags. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, pp. 104\u2013109 (2015)"},{"key":"12_CR26","doi-asserted-by":"crossref","unstructured":"Akhtar, Md.S., Sawant, P., Ekbal, A., Pawar, J., Bhattacharyya, P.: IITP at EmoInt-2017: measuring intensity of emotions using sentence embeddings and optimized features. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 212\u2013218 (2017)","DOI":"10.18653\/v1\/W17-5229"},{"key":"12_CR27","doi-asserted-by":"crossref","unstructured":"Park, J.H., Xu, P., Fung, P.: PlusEmo2Vec at SemEval-2018 Task 1: Exploiting emotion knowledge from emoji and# hashtags (2018)","DOI":"10.18653\/v1\/S18-1039"},{"key":"12_CR28","doi-asserted-by":"publisher","first-page":"421","DOI":"10.1162\/tacl_a_00033","volume":"6","author":"Y Shao","year":"2018","unstructured":"Shao, Y., Hardmeier, C., Nivre, J.: Universal word segmentation: implementation and interpretation. Trans. Assoc. Computat. Linguist. 6, 421\u2013435 (2018)","journal-title":"Trans. Assoc. Computat. Linguist."},{"key":"12_CR29","doi-asserted-by":"crossref","unstructured":"Peng, F., Feng, F., McCallum, A.: Chinese segmentation and new word detection using conditional random field. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 562 (2004)","DOI":"10.3115\/1220355.1220436"},{"key":"12_CR30","doi-asserted-by":"crossref","unstructured":"Xue, N.: Chinese word segmentation as character tagging. Int. J. Comput. Linguist. Chin. Lang. Process. 8(1), 29\u201348 (2003). Special Issue on Word Formation and Chinese Language Processing","DOI":"10.3115\/1119250.1119278"},{"key":"12_CR31","unstructured":"Norvig, P.: Natural language corpus data. Beautiful Data 219\u2013242 (2009)"}],"container-title":["Lecture Notes in Computer Science","Computational Linguistics and Intelligent Text Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-24337-0_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T04:54:51Z","timestamp":1728968091000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-24337-0_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031243363","9783031243370"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-24337-0_12","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"26 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CICLing","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Linguistics and Intelligent Text Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"La Rochelle","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 April 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 April 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cicling2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.cicling.org\/2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"335","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"95","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}