{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:07:47Z","timestamp":1726182467462},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031235788"},{"type":"electronic","value":"9783031235795"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-23579-5_2","type":"book-chapter","created":{"date-parts":[[2022,12,15]],"date-time":"2022-12-15T09:04:55Z","timestamp":1671095095000},"page":"13-29","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Novel Outlier-Tolerable and\u00a0Predictive Approach to\u00a0Web Service Composition"],"prefix":"10.1007","author":[{"given":"Xiaoning","family":"Sun","sequence":"first","affiliation":[]},{"given":"Peng","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Mengxuan","family":"Dai","sequence":"additional","affiliation":[]},{"given":"Yunni","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Wanbo","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Jianqi","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Xiaodong","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Xianhua","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Juan","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,16]]},"reference":[{"key":"2_CR1","doi-asserted-by":"publisher","unstructured":"Wu, Q., Ishikawa, F., Zhu, Q., Shin, D.H.: QoS-aware multigranularity service composition: modeling and optimization. IEEE Trans. Syst. Man Cybern. Syst. 46(11), 1565\u20131577 (2016). https:\/\/doi.org\/10.1109\/TSMC.2015.2503384","DOI":"10.1109\/TSMC.2015.2503384"},{"key":"2_CR2","doi-asserted-by":"publisher","first-page":"53593","DOI":"10.1109\/ACCESS.2018.2870151","volume":"6","author":"H Lu","year":"2018","unstructured":"Lu, H., Liu, Y., Fei, Z., Guan, C.: An outlier detection algorithm based on cross-correlation analysis for time series dataset. IEEE Access 6, 53593\u201353610 (2018). https:\/\/doi.org\/10.1109\/ACCESS.2018.2870151","journal-title":"IEEE Access"},{"key":"2_CR3","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1109\/ICWS.2016.26","volume":"2016","author":"W Wang","year":"2016","unstructured":"Wang, W., Wang, L., Lu, W.: An intelligent QoS identification for untrustworthy web services via two-phase neural networks. IEEE Int. Conf. Web Serv. (ICWS) 2016, 139\u2013146 (2016). https:\/\/doi.org\/10.1109\/ICWS.2016.26","journal-title":"IEEE Int. Conf. Web Serv. (ICWS)"},{"key":"2_CR4","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1109\/SCC.2018.00023","volume":"2018","author":"X Sun","year":"2018","unstructured":"Sun, X., et al.: A fluctuation-aware approach for predictive web service composition. IEEE Int. Conf. Serv. Comput. (SCC) 2018, 121\u2013128 (2018). https:\/\/doi.org\/10.1109\/SCC.2018.00023","journal-title":"IEEE Int. Conf. Serv. Comput. (SCC)"},{"key":"2_CR5","doi-asserted-by":"crossref","unstructured":"Yahyaoui, H., et al.: A novel scalable representative-based forecasting approach of service quality. Computing 102, 2471\u20132500 (2020)","DOI":"10.1007\/s00607-020-00802-z"},{"key":"2_CR6","doi-asserted-by":"publisher","first-page":"852","DOI":"10.1109\/SCC.2016.122","volume":"2016","author":"H Wang","year":"2016","unstructured":"Wang, H., Zheng, X.: An online prediction approach for dynamic QoS. IEEE Int. Conf. Serv. Comput. (SCC) 2016, 852\u2013855 (2016). https:\/\/doi.org\/10.1109\/SCC.2016.122","journal-title":"IEEE Int. Conf. Serv. Comput. (SCC)"},{"key":"2_CR7","doi-asserted-by":"publisher","unstructured":"Wang, X., Zhu, J., Shen, Y.: Network-aware QoS prediction for service composition using geolocation. IEEE Trans. Serv. Comput. 8(4), 630\u2013643 (2015). https:\/\/doi.org\/10.1109\/TSC.2014.2320271","DOI":"10.1109\/TSC.2014.2320271"},{"key":"2_CR8","doi-asserted-by":"crossref","unstructured":"Li, B., et al.: QoS Prediction based on temporal information and request context. Serv. Oriented Comput. Appl. 15(3), 231\u2013244 (2021)","DOI":"10.1007\/s11761-021-00322-4"},{"key":"2_CR9","doi-asserted-by":"publisher","first-page":"352","DOI":"10.1016\/j.ins.2019.12.029","volume":"519","author":"J Li","year":"2020","unstructured":"Li, J., Lin, J.: A probability distribution detection based hybrid ensemble QoS prediction approach. Inf. Sci. 519, 352\u2013353 (2020)","journal-title":"Inf. Sci."},{"key":"2_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/978-3-642-25535-9_4","volume-title":"Service-Oriented Computing","author":"H Zheng","year":"2011","unstructured":"Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compositions based on probabilistic QoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 47\u201361. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-25535-9_4"},{"key":"2_CR11","doi-asserted-by":"publisher","first-page":"676","DOI":"10.1109\/ICWS.2017.81","volume":"2017","author":"P Wang","year":"2017","unstructured":"Wang, P., Liu, T., Zhan, Y., Du, X.: A Bayesian Nash equilibrium of QoS-aware web service composition. IEEE Int. Conf. Web Serv. (ICWS) 2017, 676\u2013683 (2017). https:\/\/doi.org\/10.1109\/ICWS.2017.81","journal-title":"IEEE Int. Conf. Web Serv. (ICWS)"},{"key":"2_CR12","doi-asserted-by":"publisher","unstructured":"Hwang, S., Hsu, C., Lee, C.: Service selection for web services with probabilistic QoS. IEEE Trans. Serv. Comput. 8(3), 467\u2013480 (2015). https:\/\/doi.org\/10.1109\/TSC.2014.2338851","DOI":"10.1109\/TSC.2014.2338851"},{"issue":"23","key":"2_CR13","first-page":"5484","volume":"177","author":"S Hwang","year":"2007","unstructured":"Hwang, S., Wang, H., Tang, J., et al.: A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Inf. Sci. Int. J. 177(23), 5484\u20135503 (2007)","journal-title":"Inf. Sci. Int. J."},{"key":"2_CR14","doi-asserted-by":"publisher","unstructured":"Yu, Q., Zheng, Z., Wang, H.: Trace norm regularized matrix factorization for service recommendation. In: 2013 IEEE 20th International Conference on Web Services, pp. 34\u201341 (2013). https:\/\/doi.org\/10.1109\/ICWS.2013.15","DOI":"10.1109\/ICWS.2013.15"},{"key":"2_CR15","doi-asserted-by":"publisher","unstructured":"Zhu, X., et al.: Similarity-maintaining privacy preservation and location-aware low-rank matrix factorization for QoS prediction based web service recommendation. IEEE Trans. Serv. Comput. 14(3), 889\u2013902 (2021). https:\/\/doi.org\/10.1109\/TSC.2018.2839741","DOI":"10.1109\/TSC.2018.2839741"},{"key":"2_CR16","doi-asserted-by":"publisher","unstructured":"Wu, H., Zhang, Z., Luo, J., Yue, K., Hsu, C.H.: Multiple attributes QoS prediction via deep neural model with contexts. IEEE Trans. Serv. Comput. 14(4), 1084\u20131096 (2021). https:\/\/doi.org\/10.1109\/TSC.2018.2859986","DOI":"10.1109\/TSC.2018.2859986"},{"issue":"10","key":"2_CR17","doi-asserted-by":"publisher","first-page":"2173","DOI":"10.1109\/TCYB.2015.2467167","volume":"46","author":"M Xu","year":"2016","unstructured":"Xu, M., Han, M.: Adaptive elastic echo state network for multivariate time series prediction. IEEE Trans. Cybern. 46(10), 2173\u20132183 (2016). https:\/\/doi.org\/10.1109\/TCYB.2015.2467167","journal-title":"IEEE Trans. Cybern."},{"key":"2_CR18","doi-asserted-by":"crossref","unstructured":"Rokhman, N.: A survey on mixed-attribute outlier detection methods. CommIT Commun. Inf. Technol. J. 13(1), 39\u201344 (2019)","DOI":"10.21512\/commit.v13i1.5558"},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Rotman, M., Reis, I., Poznanski, D., Wolf, L.: Detect the unexpected: novelty detection in large astrophysical surveys using fisher vectors. In: Proceedings of 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, pp. 124\u2013134 (2019)","DOI":"10.5220\/0008163301240134"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Cook, A. A., Misirli, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481\u20136494 (2020)","DOI":"10.1109\/JIOT.2019.2958185"},{"key":"2_CR21","doi-asserted-by":"publisher","unstructured":"Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G.: ECOD: unsupervised outlier detection using empirical cumulative distribution functions. IEEE Transactions on Knowledge and Data Engineering. https:\/\/doi.org\/10.1109\/TKDE.2022.3159580","DOI":"10.1109\/TKDE.2022.3159580"},{"key":"2_CR22","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.jnca.2018.12.006","volume":"128","author":"N Moustafa","year":"2019","unstructured":"Moustafa, N., Hu, J., Slay, J.: A holistic review of network anomaly detection systems: a comprehensive survey. J. Netw. Comput. Appl. 128, 33\u201355 (2019)","journal-title":"J. Netw. Comput. Appl."},{"issue":"9","key":"2_CR23","doi-asserted-by":"publisher","first-page":"2250","DOI":"10.1109\/TKDE.2013.184","volume":"26","author":"M Gupta","year":"2014","unstructured":"Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250\u20132267 (2014). https:\/\/doi.org\/10.1109\/TKDE.2013.184","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Yu, Y., et al.: Time series outlier detection based on sliding window prediction. J. Comput. Appl. 2014(2), 2217\u20132220 (2014)","DOI":"10.1155\/2014\/879736"},{"key":"2_CR25","doi-asserted-by":"publisher","unstructured":"Liu, Y., Lu, H.: Outlier detection algorithm based on SOM neural network for spatial series dataset. In: 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 162\u2013168 (2018). https:\/\/doi.org\/10.1109\/ICACI.2018.8377600","DOI":"10.1109\/ICACI.2018.8377600"},{"key":"2_CR26","doi-asserted-by":"publisher","first-page":"5195","DOI":"10.1109\/TIFS.2021.3125608","volume":"16","author":"WA Yousef","year":"2021","unstructured":"Yousef, W.A., Traor, I., Briguglio, W.: UN-AVOIDS: unsupervised and nonparametric approach for visualizing outliers and invariant detection scoring. IEEE Trans. Inf. Forensics Secur. 16, 5195\u20135210 (2021). https:\/\/doi.org\/10.1109\/TIFS.2021.3125608","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"2_CR27","doi-asserted-by":"publisher","unstructured":"Chen, C., Liu, L.: Joint estimation of model parameters and outlier effects in time series. J. Am. Stat. Assoc. 88(421), 284C97 (1993). https:\/\/doi.org\/10.2307\/2290724","DOI":"10.2307\/2290724"},{"key":"2_CR28","doi-asserted-by":"publisher","first-page":"1910","DOI":"10.1109\/ACCESS.2019.2962703","volume":"8","author":"X Sun","year":"2020","unstructured":"Sun, X., Wang, S., Xia, Y., Zheng, W.: Predictive-trend-aware composition of web services with time-varying quality-of-service. IEEE Access 8, 1910\u20131921 (2020). https:\/\/doi.org\/10.1109\/ACCESS.2019.2962703","journal-title":"IEEE Access"},{"key":"2_CR29","doi-asserted-by":"publisher","unstructured":"Chen, R., Wang, X.: Situation-aware orchestration of resource allocation and task scheduling for collaborative rendering in IoT visualization. IEEE Transactions on Sustainable Computing. https:\/\/doi.org\/10.1109\/TSUSC.2022.3165016","DOI":"10.1109\/TSUSC.2022.3165016"},{"key":"2_CR30","doi-asserted-by":"publisher","unstructured":"Somasundaram, K.S.G.A., Saranya, A.M.N.N., Prabha, R., Babu, D.V.: A novel hybrid GAACO algorithm for cloud computing using energy aware load balance scheduling. In: 2022 International Conference on Computer Communication and Informatics (ICCCI), pp. 1\u20135 (2022). https:\/\/doi.org\/10.1109\/ICCCI54379.2022.9740795","DOI":"10.1109\/ICCCI54379.2022.9740795"},{"issue":"3","key":"2_CR31","doi-asserted-by":"publisher","first-page":"1391","DOI":"10.1109\/TSG.2013.2251018","volume":"4","author":"Z Zhao","year":"2013","unstructured":"Zhao, Z., Lee, W.C., Shin, Y., Song, K.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391\u20131400 (2013). https:\/\/doi.org\/10.1109\/TSG.2013.2251018","journal-title":"IEEE Trans. Smart Grid"},{"key":"2_CR32","doi-asserted-by":"publisher","unstructured":"Yang, Y., Niu, Y., Lam, H.K.: Sliding-mode control for interval type-2 fuzzy systems: event-triggering WTOD scheme. IEEE Transactions on Cybernetics. https:\/\/doi.org\/10.1109\/TCYB.2022.3163452","DOI":"10.1109\/TCYB.2022.3163452"},{"key":"2_CR33","doi-asserted-by":"crossref","unstructured":"Ben Othman, M.T., Abdel-Azim, G.: Multiple sequence alignment based on genetic algorithms with new chromosomes representation. In: 2012 16th IEEE Mediterranean Electrotechnical Conference, p. 1030\u20131033 (2012)","DOI":"10.1109\/MELCON.2012.6196603"},{"key":"2_CR34","doi-asserted-by":"publisher","unstructured":"Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans. Serv. Comput. 7(1), 32\u201339 (2014). https:\/\/doi.org\/10.1109\/TSC.2012.34","DOI":"10.1109\/TSC.2012.34"}],"container-title":["Lecture Notes in Computer Science","Web Services \u2013 ICWS 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-23579-5_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,15]],"date-time":"2022-12-15T20:09:39Z","timestamp":1671134979000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-23579-5_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031235788","9783031235795"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-23579-5_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"16 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICWS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Web Services","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Honolulu, HI","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 December 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 December 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icws2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.servicessociety.org\/icws","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EADS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"9","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}