{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T04:49:34Z","timestamp":1743137374344,"version":"3.40.3"},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031234910"},{"type":"electronic","value":"9783031234927"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-23492-7_13","type":"book-chapter","created":{"date-parts":[[2023,1,23]],"date-time":"2023-01-23T10:03:37Z","timestamp":1674468217000},"page":"144-153","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multi-objective Bayesian Optimization for\u00a0Neural Architecture Search"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3879-3459","authenticated-orcid":false,"given":"Petra","family":"Vidnerov\u00e1","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8491-0364","authenticated-orcid":false,"given":"Jan","family":"Kalina","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,24]]},"reference":[{"key":"13_CR1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-24494-1","volume-title":"Bayesian Optimization and Data Science","author":"F Archetti","year":"2019","unstructured":"Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-24494-1"},{"key":"13_CR2","unstructured":"Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning (2010)"},{"issue":"2","key":"13_CR3","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182\u2013197 (2002). https:\/\/doi.org\/10.1109\/4235.996017","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"13_CR4","first-page":"1997","volume":"20","author":"T Elsken","year":"2019","unstructured":"Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997\u20132017 (2019)","journal-title":"J. Mach. Learn. Res."},{"key":"13_CR5","unstructured":"Eriksson, D., et al.: Latency-aware neural architecture search with multi-objective Bayesian optimization. CoRR abs\/2106.11890 (2021). arxiv.org\/abs\/2106.11890"},{"key":"13_CR6","first-page":"2171","volume":"13","author":"FA Fortin","year":"2012","unstructured":"Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagn\u00e9, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171\u20132175 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"13_CR7","doi-asserted-by":"publisher","unstructured":"Galuzio, P.P., de Vasconcelos Segundo, E.H., dos Santos Coelho, L., Mariani, V.C.: MOBOpt - multi-objective Bayesian optimization. SoftwareX 12, 100520 (2020). https:\/\/doi.org\/10.1016\/j.softx.2020.100520. http:\/\/www.sciencedirect.com\/science\/article\/pii\/S2352711020300911","DOI":"10.1016\/j.softx.2020.100520"},{"key":"13_CR8","unstructured":"Goodfellow, I., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. https:\/\/www.tensorflow.org\/"},{"key":"13_CR9","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http:\/\/www.deeplearningbook.org"},{"key":"13_CR10","unstructured":"Kandasamy, K., Krishnamurthy, A., Schneider, J., P\u00f3czos, B.: Parallelised Bayesian optimisation via Thompson sampling. In: AISTATS. Proceedings of Machine Learning Research, vol. 84, pp. 133\u2013142. PMLR (2018)"},{"key":"13_CR11","unstructured":"Kandasamy, K., Neiswanger, W., Schneider, J., P\u00f3czos, B., Xing, E.P.: Neural architecture search with Bayesian optimisation and optimal transport. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS 2018, Red Hook, NY, USA, pp. 2020\u20132029. Curran Associates Inc. (2018)"},{"key":"13_CR12","unstructured":"Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Syst. 4, 461\u2013476 (1990)"},{"key":"13_CR13","unstructured":"Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 dataset. http:\/\/www.cs.toronto.edu\/kriz\/cifar.html"},{"issue":"7553","key":"13_CR14","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y Lecun","year":"2015","unstructured":"Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015). https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"key":"13_CR15","unstructured":"LeCun, Y., Cortes, C.: The MNIST database of handwritten digits (2012). http:\/\/research.microsoft.com\/apps\/pubs\/default.aspx?id=204699"},{"key":"13_CR16","unstructured":"Miikkulainen, R., et al.: Evolving deep neural networks. CoRR abs\/1703.00548 (2017). http:\/\/arxiv.org\/abs\/1703.00548"},{"key":"13_CR17","doi-asserted-by":"publisher","unstructured":"Mrazek, V., Sarwar, S.S., Sekanina, L., Vasicek, Z., Roy, K.: Design of power-efficient approximate multipliers for approximate artificial neural networks. In: 2016 IEEE\/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1\u20137 (2016). https:\/\/doi.org\/10.1145\/2966986.2967021","DOI":"10.1145\/2966986.2967021"},{"key":"13_CR18","first-page":"3011","volume":"11","author":"CE Rasmussen","year":"2010","unstructured":"Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11, 3011\u20133015 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"13_CR19","doi-asserted-by":"publisher","unstructured":"Real, E., Aggarwal, A., Huang, Y., Le, Q.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, February 2018. https:\/\/doi.org\/10.1609\/aaai.v33i01.33014780","DOI":"10.1609\/aaai.v33i01.33014780"},{"key":"13_CR20","unstructured":"Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, Red Hook, NY, USA, vol. 2, pp. 2951\u20132959. Curran Associates Inc. (2012)"},{"key":"13_CR21","unstructured":"Vidnerov\u00e1, P., Kalina, J.: Bayonet (2022). https:\/\/github.com\/PetraVidnerova\/BayONet"},{"key":"13_CR22","doi-asserted-by":"publisher","unstructured":"Vidnerova, P., Neruda, R.: Evolving keras architectures for sensor data analysis. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 109\u2013112, September 2017. https:\/\/doi.org\/10.15439\/2017F241","DOI":"10.15439\/2017F241"},{"key":"13_CR23","unstructured":"White, C., Neiswanger, W., Nolen, S., Savani, Y.: A study on encodings for neural architecture search. In: Advances in Neural Information Processing Systems (2020)"},{"key":"13_CR24","doi-asserted-by":"crossref","unstructured":"White, C., Neiswanger, W., Savani, Y.: BANANAS: Bayesian optimization with neural architectures for neural architecture search. In: AAAI Conference on Artificial Intelligence (AAAI-2021) (2021)","DOI":"10.1609\/aaai.v35i12.17233"},{"key":"13_CR25","unstructured":"Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)"},{"key":"13_CR26","unstructured":"Xu, J., Zhou, W., Fu, Z., Zhou, H., Li, L.: A survey on green deep learning (2021)"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence and Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-23492-7_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,3]],"date-time":"2023-02-03T09:08:43Z","timestamp":1675415323000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-23492-7_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031234910","9783031234927"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-23492-7_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"24 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICAISC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Intelligence and Soft Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zakopane","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Poland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 June 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icaisc2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/icaisc.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}