{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:23:13Z","timestamp":1726183393939},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031232350"},{"type":"electronic","value":"9783031232367"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-23236-7_29","type":"book-chapter","created":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T01:22:43Z","timestamp":1672536163000},"page":"419-426","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Smart Data Driven System for\u00a0Pathological Voices Classification"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0618-4627","authenticated-orcid":false,"given":"Joana","family":"Fernandes","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5647-0891","authenticated-orcid":false,"given":"Arnaldo Candido","family":"Junior","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4260-9677","authenticated-orcid":false,"given":"Diamantino","family":"Freitas","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6679-5702","authenticated-orcid":false,"given":"Jo\u00e3o Paulo","family":"Teixeira","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,1]]},"reference":[{"issue":"1","key":"29_CR1","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/J.JVOICE.2009.06.008","volume":"25","author":"RHG Martins","year":"2011","unstructured":"Martins, R.H.G., Santana, M.F., Tavares, E.L.M.: Vocal cysts: clinical, endoscopic, and surgical aspects. J. Voice 25(1), 107\u2013110 (2011). https:\/\/doi.org\/10.1016\/J.JVOICE.2009.06.008","journal-title":"J. Voice"},{"issue":"10","key":"29_CR2","doi-asserted-by":"publisher","first-page":"1943","DOI":"10.1109\/TBME.2006.871883","volume":"53","author":"JI Godino-Llorente","year":"2006","unstructured":"Godino-Llorente, J.I., Gomez-Vilda, P., Blanco-Velasco, M.: Dimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and short-term cepstral parameters. IEEE Trans. Biomed. Eng. 53(10), 1943\u20131953 (2006). https:\/\/doi.org\/10.1109\/TBME.2006.871883","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"29_CR3","doi-asserted-by":"publisher","unstructured":"Fonseca, E.S., Guido, R.C., Junior, S.B., Dezani, H., Gati, R.R., Mosconi Pereira, D.C.: Acoustic investigation of speech pathologies based on the discriminative paraconsistent machine (DPM). Biomed. Signal Process. Control. 55, 101615 (2020). https:\/\/doi.org\/10.1016\/J.BSPC.2019.101615","DOI":"10.1016\/J.BSPC.2019.101615"},{"issue":"6","key":"29_CR4","doi-asserted-by":"publisher","first-page":"947.e11","DOI":"10.1016\/J.JVOICE.2018.07.014","volume":"33","author":"S Hegde","year":"2019","unstructured":"Hegde, S., Shetty, S., Rai, S., Dodderi, T.: A survey on machine learning approaches for automatic detection of voice disorders. J. Voice 33(6), 947.e11-947.e33 (2019). https:\/\/doi.org\/10.1016\/J.JVOICE.2018.07.014","journal-title":"J. Voice"},{"issue":"2","key":"29_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/J.AMJOTO.2021.103327","volume":"43","author":"J Reid","year":"2022","unstructured":"Reid, J., Parmar, P., Lund, T., Aalto, D.K., Jeffery, C.C.: Development of a machine-learning based voice disorder screening tool. Am. J. Otolaryngol. 43(2), 103327 (2022). https:\/\/doi.org\/10.1016\/J.AMJOTO.2021.103327","journal-title":"Am. J. Otolaryngol."},{"issue":"1","key":"29_CR6","first-page":"49","volume":"29","author":"X-J Zhang","year":"2021","unstructured":"Zhang, X.-J., Zhu, X.-C., Wu, D., Xiao, Z.-Z., Tao, Z., Zhao, H.-M.: Nonlinear features of bark wavelet sub-band filtering for pathological voice recognition. Eng. Lett. 29(1), 49\u201360 (2021)","journal-title":"Eng. Lett."},{"issue":"3","key":"29_CR7","doi-asserted-by":"publisher","first-page":"646","DOI":"10.1109\/TIM.2017.2781958","volume":"67","author":"A Castellana","year":"2018","unstructured":"Castellana, A., Carullo, A., Corbellini, S., Astolfi, A.: Discriminating pathological voice from healthy voice using cepstral peak prominence smoothed distribution in sustained vowel. IEEE Trans. Instrum. Meas. 67(3), 646\u2013654 (2018). https:\/\/doi.org\/10.1109\/TIM.2017.2781958","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"1","key":"29_CR8","first-page":"60","volume":"18","author":"H Ank\u0131\u015fhan","year":"2018","unstructured":"Ank\u0131\u015fhan, H.: A new approach for detection of pathological voice disorders with reduced parameters. Electrica 18(1), 60\u201371 (2018)","journal-title":"Electrica"},{"issue":"11","key":"29_CR9","doi-asserted-by":"publisher","first-page":"82","DOI":"10.14569\/IJACSA.2018.091112","volume":"9","author":"R Hamdi","year":"2018","unstructured":"Hamdi, R., Hajji, S., Cherif, A.: Voice pathology recognition and classification using noise related features. Int. J. Adv. Comput. Sci. Appl. 9(11), 82\u201387 (2018). https:\/\/doi.org\/10.14569\/IJACSA.2018.091112","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"issue":"2","key":"29_CR10","doi-asserted-by":"publisher","first-page":"288.e15","DOI":"10.1016\/J.JVOICE.2020.05.029","volume":"36","author":"L Chen","year":"2022","unstructured":"Chen, L., Chen, J.: Deep neural network for automatic classification of pathological voice signals. J. Voice 36(2), 288.e15-288.e24 (2022). https:\/\/doi.org\/10.1016\/J.JVOICE.2020.05.029","journal-title":"J. Voice"},{"key":"29_CR11","doi-asserted-by":"publisher","unstructured":"Zakariah, M., Ajmi Alotaibi, Y., Guo, Y., Tran-Trung, K., Mamun Elahi, M.: An Analytical Study of Speech Pathology Detection Based on MFCC and Deep Neural Networks (2022). https:\/\/doi.org\/10.1155\/2022\/7814952","DOI":"10.1155\/2022\/7814952"},{"issue":"3","key":"29_CR12","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1016\/J.IRBM.2019.11.004","volume":"41","author":"I Hammami","year":"2020","unstructured":"Hammami, I., Salhi, L., Labidi, S.: Voice pathologies classification and detection using EMD-DWT analysis based on higher order statistic features. IRBM 41(3), 161\u2013171 (2020). https:\/\/doi.org\/10.1016\/J.IRBM.2019.11.004","journal-title":"IRBM"},{"key":"29_CR13","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/J.FUTURE.2018.02.021","volume":"85","author":"Z Ali","year":"2018","unstructured":"Ali, Z., Hossain, M.S., Muhammad, G., Sangaiah, A.K.: An intelligent healthcare system for detection and classification to discriminate vocal fold disorders. Futur. Gener. Comput. Syst. 85, 19\u201328 (2018). https:\/\/doi.org\/10.1016\/J.FUTURE.2018.02.021","journal-title":"Futur. Gener. Comput. Syst."},{"key":"29_CR14","doi-asserted-by":"publisher","unstructured":"Al Mojaly, M., Muhammad, G., Alsulaiman, M.: Detection and Classification of Voice Pathology Using Feature Selection (2014). https:\/\/doi.org\/10.1109\/AICCSA.2014.7073250","DOI":"10.1109\/AICCSA.2014.7073250"},{"key":"29_CR15","unstructured":"P\u00fctzer, M., Barry, W.J.: Saarbruecken Voice Database: Institute of Phonetics at the University of Saarland (2007). http:\/\/www.stimmdatenbank.coli.uni-saarland.de. Accessed 05 Nov 2021"},{"key":"29_CR16","doi-asserted-by":"publisher","first-page":"654","DOI":"10.1016\/J.PROCS.2019.12.232","volume":"164","author":"J Fernandes","year":"2019","unstructured":"Fernandes, J., Silva, L., Teixeira, F., Guedes, V., Santos, J., Teixeira, J.P.: Parameters for vocal acoustic analysis - cured database. Procedia Comput. Sci. 164, 654\u2013661 (2019). https:\/\/doi.org\/10.1016\/J.PROCS.2019.12.232","journal-title":"Procedia Comput. Sci."},{"key":"29_CR17","doi-asserted-by":"publisher","unstructured":"Teixeira, J.P., Gon\u00e7alves, A.: Algorithm for jitter and shimmer measurement in pathologic voices. Procedia Comput. Sci. 100, 271\u2013279 (2016). https:\/\/doi.org\/10.1016\/J.PROCS.2016.09.155","DOI":"10.1016\/J.PROCS.2016.09.155"},{"key":"29_CR18","doi-asserted-by":"publisher","unstructured":"Hamdi, R., Hajji, S., Cherif, A., Processing, S.: Recognition of pathological voices by human factor cepstral coefficients (HFCC). J. Comput. Sci. (2020). https:\/\/doi.org\/10.3844\/jcssp.2020.1085.1099","DOI":"10.3844\/jcssp.2020.1085.1099"},{"key":"29_CR19","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1016\/J.PROCS.2018.10.040","volume":"138","author":"J Fernandes","year":"2018","unstructured":"Fernandes, J., Teixeira, F., Guedes, V., Junior, A., Teixeira, J.P.: Harmonic to noise ratio measurement - selection of window and length. Procedia Comput. Sci. 138, 280\u2013285 (2018). https:\/\/doi.org\/10.1016\/J.PROCS.2018.10.040","journal-title":"Procedia Comput. Sci."},{"key":"29_CR20","doi-asserted-by":"publisher","first-page":"466","DOI":"10.1016\/J.PROCS.2015.08.544","volume":"64","author":"JP Teixeira","year":"2015","unstructured":"Teixeira, J.P., Fernandes, P.O.: Acoustic analysis of vocal dysphonia. Procedia Comput. Sci. 64, 466\u2013473 (2015). https:\/\/doi.org\/10.1016\/J.PROCS.2015.08.544","journal-title":"Procedia Comput. Sci."},{"key":"29_CR21","doi-asserted-by":"publisher","unstructured":"Teixeira, J.P., Fernandes, J., Teixeira, F., Fernandes, P.O.: Acoustic analysis of chronic laryngitis statistical analysis of sustained speech parameters. In: BIOSIGNALS 2018\u201311th International Conference on Bio-Inspired Systems and Signal Processing, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018, vol. 4, pp. 168\u2013175 (2018). https:\/\/doi.org\/10.5220\/0006586301680175","DOI":"10.5220\/0006586301680175"},{"issue":"4","key":"29_CR22","first-page":"237","volume":"12","author":"P Boersma","year":"2004","unstructured":"Boersma, P.: Stemmen meten met Praat. Stem-, Spraak- en Taalpathologie 12(4), 237\u2013251 (2004)","journal-title":"Stem-, Spraak- en Taalpathologie"},{"key":"29_CR23","doi-asserted-by":"publisher","unstructured":"Ara\u00fajo, T., Teixeira, J.P., Rodrigues, P.M.: Smart-Data-Driven System for Alzheimer Disease Detection through Electroencephalographic Signals (2022). https:\/\/doi.org\/10.3390\/bioengineering9040141","DOI":"10.3390\/bioengineering9040141"},{"key":"29_CR24","doi-asserted-by":"publisher","first-page":"678","DOI":"10.1016\/J.PROCS.2019.12.235","volume":"164","author":"L Silva","year":"2019","unstructured":"Silva, L., et al.: Outliers treatment to improve the recognition of voice pathologies. Procedia Comput. Sci. 164, 678\u2013685 (2019). https:\/\/doi.org\/10.1016\/J.PROCS.2019.12.235","journal-title":"Procedia Comput. Sci."},{"key":"29_CR25","doi-asserted-by":"publisher","unstructured":"Teixeira, J.P., Alves, N., Fernandes, P.O.: Vocal acoustic analysis: ANN versos SVM in classification of dysphonic voices and vocal cords paralysis. Int. J. E-Health Med. Commun. 11, 37\u201351 (2020)https:\/\/doi.org\/10.4018\/IJEHMC.2020010103","DOI":"10.4018\/IJEHMC.2020010103"},{"key":"29_CR26","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/J.PROCS.2017.11.004","volume":"121","author":"JP Teixeira","year":"2017","unstructured":"Teixeira, J.P., Fernandes, P.O., Alves, N.: Vocal acoustic analysis - classification of dysphonic voices with artificial neural networks. Procedia Comput. Sci. 121, 19\u201326 (2017). https:\/\/doi.org\/10.1016\/J.PROCS.2017.11.004","journal-title":"Procedia Comput. Sci."}],"container-title":["Communications in Computer and Information Science","Optimization, Learning Algorithms and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-23236-7_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T02:30:22Z","timestamp":1672540222000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-23236-7_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031232350","9783031232367"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-23236-7_29","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"1 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"OL2A","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Optimization, Learning Algorithms and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bragan\u00e7a","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ol2a2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ol2a.ipb.pt\/EN_index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"145","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"53","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}