{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:04:28Z","timestamp":1726182268286},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031219665"},{"type":"electronic","value":"9783031219672"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21967-2_38","type":"book-chapter","created":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T03:02:35Z","timestamp":1670468555000},"page":"470-483","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["FASENet: A Two-Stream Fall Detection and\u00a0Activity Monitoring Model Using Pose Keypoints and\u00a0Squeeze-and-Excitation Networks"],"prefix":"10.1007","author":[{"given":"Jessie James P.","family":"Suarez","sequence":"first","affiliation":[]},{"suffix":"Jr.","given":"Nathaniel S.","family":"Orillaza","sequence":"additional","affiliation":[]},{"suffix":"Jr.","given":"Prospero C.","family":"Naval","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,9]]},"reference":[{"key":"38_CR1","unstructured":"Falls (2021). https:\/\/www.who.int\/news-room\/fact-sheets\/detail\/falls"},{"key":"38_CR2","unstructured":"Abedi, W.M.S., Ibraheem Nadher, D., Sadiq, A.T.: Modified deep learning method for body postures recognition. Int. J. Adv. Sci. Technol. 29, 3830\u20133841 (2020)"},{"key":"38_CR3","doi-asserted-by":"crossref","unstructured":"Adhikari, K., Bouchachia, H., Nait-Charif, H.: Activity recognition for indoor fall detection using convolutional neural network. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA). IEEE (2017). https:\/\/dx.doi.org\/10.23919\/MVA.2017.7986795","DOI":"10.23919\/MVA.2017.7986795"},{"key":"38_CR4","doi-asserted-by":"crossref","unstructured":"Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1\u20136. IEEE (2017)","DOI":"10.1109\/ICEngTechnol.2017.8308186"},{"key":"38_CR5","doi-asserted-by":"crossref","unstructured":"Bhandari, S., Babar, N., Gupta, P., Shah, N., Pujari, S.: A novel approach for fall detection in home environment. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE) (2017)","DOI":"10.1109\/GCCE.2017.8229325"},{"key":"38_CR6","doi-asserted-by":"publisher","first-page":"44493","DOI":"10.1109\/ACCESS.2020.2978249","volume":"8","author":"X Cai","year":"2020","unstructured":"Cai, X., Li, S., Liu, X., Han, G.: Vision-based fall detection with multi-task hourglass convolutional auto-encoder. IEEE Access 8, 44493\u201344502 (2020)","journal-title":"IEEE Access"},{"key":"38_CR7","doi-asserted-by":"crossref","unstructured":"Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299\u20136308 (2017)","DOI":"10.1109\/CVPR.2017.502"},{"issue":"2","key":"38_CR8","first-page":"250","volume":"13","author":"F Elshwemy","year":"2020","unstructured":"Elshwemy, F., Elbasiony, R., Saidahmed, M.: A new approach for thermal vision based fall detection using residual autoencoder. Int. J. Intell. Eng. Syst. 13(2), 250\u2013258 (2020)","journal-title":"Int. J. Intell. Eng. Syst."},{"key":"38_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2019.103520","volume":"115","author":"R Espinosa","year":"2019","unstructured":"Espinosa, R., Ponce, H., Gutierrez, S., Mart\u00ednez-Villasenor, L., Brieva, J., Moya-Albor, E.: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the up-fall detection dataset. Comput. Biol. Med. 115, 103520 (2019)","journal-title":"Comput. Biol. Med."},{"key":"38_CR10","doi-asserted-by":"publisher","first-page":"242","DOI":"10.1016\/j.patrec.2018.08.031","volume":"130","author":"Q Feng","year":"2020","unstructured":"Feng, Q., Gao, C., Wang, L., Zhao, Y., Song, T., Li, Q.: Spatio-temporal fall event detection in complex scenes using attention guided LSTM. Pattern Recogn. Lett. 130, 242\u2013249 (2020)","journal-title":"Pattern Recogn. Lett."},{"key":"38_CR11","doi-asserted-by":"publisher","first-page":"17556","DOI":"10.1109\/ACCESS.2019.2962778","volume":"8","author":"Q Han","year":"2020","unstructured":"Han, Q., et al.: A two-stream approach to fall detection with MobileVGG. IEEE Access 8, 17556\u201317566 (2020)","journal-title":"IEEE Access"},{"issue":"6","key":"38_CR12","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1109\/MIM.2017.8121952","volume":"20","author":"F Harrou","year":"2017","unstructured":"Harrou, F., Zerrouki, N., Sun, Y., Houacine, A.: Vision-based fall detection system for improving safety of elderly people. IEEE Instrum. Measur. Mag. 20(6), 49\u201355 (2017)","journal-title":"IEEE Instrum. Measur. Mag."},{"key":"38_CR13","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"38_CR14","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"38_CR15","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1016\/j.jvcir.2019.01.024","volume":"59","author":"Y Kong","year":"2019","unstructured":"Kong, Y., Huang, J., Huang, S., Wei, Z., Wang, S.: Learning spatiotemporal representations for human fall detection in surveillance video. J. Vis. Commun. Image Represent. 59, 215\u2013230 (2019)","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"3","key":"38_CR16","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1016\/j.cmpb.2014.09.005","volume":"117","author":"B Kwolek","year":"2014","unstructured":"Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489\u2013501 (2014)","journal-title":"Comput. Methods Programs Biomed."},{"issue":"1","key":"38_CR17","doi-asserted-by":"publisher","first-page":"329","DOI":"10.3390\/app11010329","volume":"11","author":"CB Lin","year":"2020","unstructured":"Lin, C.B., Dong, Z., Kuan, W.K., Huang, Y.F.: A framework for fall detection based on OpenPose skeleton and LSTM\/GRU models. Appl. Sci. 11(1), 329 (2020)","journal-title":"Appl. Sci."},{"key":"38_CR18","unstructured":"Lugaresi, C., et al.: MediaPipe: a framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019)"},{"key":"38_CR19","unstructured":"Luo, Z., et al.: Computer vision-based descriptive analytics of seniors\u2019 daily activities for long-term health monitoring. Mach. Learn. Healthcare (MLHC) 2, 1 (2018)"},{"issue":"9","key":"38_CR20","doi-asserted-by":"publisher","first-page":"1988","DOI":"10.3390\/s19091988","volume":"19","author":"L Mart\u00ednez-Villase\u00f1or","year":"2019","unstructured":"Mart\u00ednez-Villase\u00f1or, L., Ponce, H., Brieva, J., Moya-Albor, E., N\u00fa\u00f1ez-Mart\u00ednez, J., Pe\u00f1afort-Asturiano, C.: UP-fall detection dataset: a multimodal approach. Sensors 19(9), 1988 (2019)","journal-title":"Sensors"},{"key":"38_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2017\/9474806","volume":"2017","author":"A Nunez-Marcos","year":"2017","unstructured":"Nunez-Marcos, A., Azkune, G., Arganda-Carreras, I.: Vision-based fall detection with convolutional neural networks. Wirel. Commun. Mob. Comput. 2017, 1\u201316 (2017)","journal-title":"Wirel. Commun. Mob. Comput."},{"key":"38_CR22","doi-asserted-by":"crossref","unstructured":"P\u00e9rez-Ros, P., Sanchis-Aguado, M.A., Dur\u00e1-Gil, J.V., Mart\u00ednez-Arnau, F.M., Belda-Lois, J.M.: FallSkip device is a useful tool for fall risk assessment in sarcopenic older community people. Int. J. Older People Nurs. (2021)","DOI":"10.1111\/opn.12431"},{"issue":"2","key":"38_CR23","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1007\/s12652-015-0328-1","volume":"9","author":"S Sathyanarayana","year":"2015","unstructured":"Sathyanarayana, S., Satzoda, R.K., Sathyanarayana, S., Thambipillai, S.: Vision-based patient monitoring: a comprehensive review of algorithms and technologies. J. Ambient. Intell. Humaniz. Comput. 9(2), 225\u2013251 (2015)","journal-title":"J. Ambient. Intell. Humaniz. Comput."},{"issue":"4","key":"38_CR24","doi-asserted-by":"publisher","first-page":"426","DOI":"10.3390\/s16040426","volume":"16","author":"M Shoaib","year":"2016","unstructured":"Shoaib, M., Bosch, S., Incel, O., Scholten, H., Havinga, P.: Complex human activity recognition using smartphone and wrist-worn motion sensors. Sensors 16(4), 426 (2016)","journal-title":"Sensors"},{"issue":"19","key":"38_CR25","doi-asserted-by":"publisher","first-page":"3697","DOI":"10.3390\/ijerph16193697","volume":"16","author":"FM Silva","year":"2019","unstructured":"Silva, F.M., et al.: The sedentary time and physical activity levels on physical fitness in the elderly: a comparative cross sectional study. Int. J. Environ. Res. Public Health 16(19), 3697 (2019)","journal-title":"Int. J. Environ. Res. Public Health"},{"key":"38_CR26","doi-asserted-by":"crossref","unstructured":"Suarez, J.J.P., Orillaza, N.S., Naval, P.C.: AFAR: a real-time vision-based activity monitoring and fall detection framework using 1D convolutional neural networks. In: 14th International Conference on Machine Learning and Computing (2022)","DOI":"10.1145\/3529836.3529862"},{"key":"38_CR27","doi-asserted-by":"crossref","unstructured":"Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489\u20134497 (2015)","DOI":"10.1109\/ICCV.2015.510"},{"key":"38_CR28","doi-asserted-by":"publisher","first-page":"28","DOI":"10.3389\/frobt.2015.00028","volume":"2","author":"M Vrigkas","year":"2015","unstructured":"Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. Front. Robot. AI 2, 28 (2015)","journal-title":"Front. Robot. AI"},{"issue":"19","key":"38_CR29","doi-asserted-by":"publisher","first-page":"11603","DOI":"10.1007\/s11042-015-2698-y","volume":"75","author":"S Wang","year":"2015","unstructured":"Wang, S., Chen, L., Zhou, Z., Sun, X., Dong, J.: Human fall detection in surveillance video based on PCANet. Multimed. Tools Appl. 75(19), 11603\u201311613 (2015)","journal-title":"Multimed. Tools Appl."},{"key":"38_CR30","doi-asserted-by":"crossref","unstructured":"Zerrouki, N., Harrou, F., Houacine, A., Sun, Y.: Fall detection using supervised machine learning algorithms: a comparative study. In: 2016 8th International Conference on Modelling, Identification and Control (ICMIC) (2016)","DOI":"10.1109\/ICMIC.2016.7804195"},{"key":"38_CR31","doi-asserted-by":"crossref","unstructured":"Zeytinoglu, M., Wroblewski, K.E., Vokes, T.J., Huisingh-Scheetz, M., Hawkley, L.C., Huang, E.S.: Association of loneliness with falls: a study of older US adults using the national social life, health, and aging project. Gerontol. Geriatr. Med. 7, 233372142198921 (2021)","DOI":"10.1177\/2333721421989217"},{"key":"38_CR32","doi-asserted-by":"publisher","first-page":"2845","DOI":"10.1049\/ipr2.12208","volume":"16","author":"N Zhu","year":"2021","unstructured":"Zhu, N., Zhao, G., Zhang, X., Jin, Z.: Falling motion detection algorithm based on deep learning. IET Image Process. 16, 2845\u20132853 (2021)","journal-title":"IET Image Process."}],"container-title":["Lecture Notes in Computer Science","Intelligent Information and Database Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21967-2_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T03:16:45Z","timestamp":1670469405000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21967-2_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031219665","9783031219672"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21967-2_38","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"9 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACIIDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Intelligent Information and Database Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ho Chi Minh City","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aciids2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aciids.pwr.edu.pl\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}