{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:04:19Z","timestamp":1726182259286},"publisher-location":"Cham","reference-count":15,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031219665"},{"type":"electronic","value":"9783031219672"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21967-2_23","type":"book-chapter","created":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T08:02:35Z","timestamp":1670486555000},"page":"282-291","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Relearning Ensemble Selection Based on\u00a0New Generated Features"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3506-6611","authenticated-orcid":false,"given":"Robert","family":"Burduk","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,9]]},"reference":[{"issue":"20","key":"23_CR1","doi-asserted-by":"publisher","first-page":"16091","DOI":"10.1007\/s00521-020-04761-6","volume":"32","author":"OA Alzubi","year":"2020","unstructured":"Alzubi, O.A., Alzubi, J.A., Alweshah, M., Qiqieh, I., Al-Shami, S., Ramachandran, M.: An optimal pruning algorithm of classifier ensembles: dynamic programming approach. Neural Comput. Appl. 32(20), 16091\u201316107 (2020). https:\/\/doi.org\/10.1007\/s00521-020-04761-6","journal-title":"Neural Comput. Appl."},{"issue":"9","key":"23_CR2","doi-asserted-by":"publisher","first-page":"3766","DOI":"10.1109\/TNNLS.2019.2945116","volume":"31","author":"Y Bian","year":"2019","unstructured":"Bian, Y., Wang, Y., Yao, Y., Chen, H.: Ensemble pruning based on objection maximization with a general distributed framework. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3766\u20133774 (2019)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"23_CR3","doi-asserted-by":"crossref","unstructured":"Brun, A.L., Britto Jr., A.S., Oliveira, L.S., Enembreck, F., Sabourin, R.: A framework for dynamic classifier selection oriented by the classification problem difficulty. Pattern Recogn. 76, 175\u2013190 (2018)","DOI":"10.1016\/j.patcog.2017.10.038"},{"key":"23_CR4","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1016\/j.patcog.2018.07.037","volume":"85","author":"RM Cruz","year":"2019","unstructured":"Cruz, R.M., Oliveira, D.V., Cavalcanti, G.D., Sabourin, R.: FIRE-DES++: enhanced online pruning of base classifiers for dynamic ensemble selection. Pattern Recogn. 85, 149\u2013160 (2019)","journal-title":"Pattern Recogn."},{"key":"23_CR5","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1016\/j.inffus.2017.09.010","volume":"41","author":"RM Cruz","year":"2018","unstructured":"Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: Dynamic classifier selection: recent advances and perspectives. Inf. Fusion 41, 195\u2013216 (2018)","journal-title":"Inf. Fusion"},{"key":"23_CR6","unstructured":"Dua, D., Graff, C.: UCI machine learning repository (2017). http:\/\/archive.ics.uci.edu\/ml"},{"key":"23_CR7","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.113351","volume":"152","author":"LM Junior","year":"2020","unstructured":"Junior, L.M., Nardini, F.M., Renso, C., Trani, R., Macedo, J.A.: A novel approach to define the local region of dynamic selection techniques in imbalanced credit scoring problems. Expert Syst. Appl. 152, 113351 (2020)","journal-title":"Expert Syst. Appl."},{"key":"23_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2019.107104","volume":"100","author":"TT Nguyen","year":"2020","unstructured":"Nguyen, T.T., Luong, A.V., Dang, M.T., Liew, A.W.C., McCall, J.: Ensemble selection based on classifier prediction confidence. Pattern Recogn. 100, 107104 (2020)","journal-title":"Pattern Recogn."},{"key":"23_CR9","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1016\/j.patcog.2017.06.030","volume":"72","author":"DV Oliveira","year":"2017","unstructured":"Oliveira, D.V., Cavalcanti, G.D., Sabourin, R.: Online pruning of base classifiers for dynamic ensemble selection. Pattern Recogn. 72, 44\u201358 (2017)","journal-title":"Pattern Recogn."},{"key":"23_CR10","doi-asserted-by":"crossref","unstructured":"Piwowarczyk, M., Muke, P.Z., Telec, Z., Tworek, M., Trawi\u0144ski, B.: Comparative analysis of ensembles created using diversity measures of regressors. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2207\u20132214. IEEE (2020)","DOI":"10.1109\/SMC42975.2020.9282916"},{"key":"23_CR11","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/j.neucom.2018.01.060","volume":"286","author":"A Roy","year":"2018","unstructured":"Roy, A., Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: A study on combining dynamic selection and data preprocessing for imbalance learning. Neurocomputing 286, 179\u2013192 (2018)","journal-title":"Neurocomputing"},{"issue":"4","key":"23_CR12","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1249","volume":"8","author":"O Sagi","year":"2018","unstructured":"Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(4), e1249 (2018)","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discov."},{"key":"23_CR13","doi-asserted-by":"crossref","unstructured":"Scholkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. In: Adaptive Computation and Machine Learning Series (2018)","DOI":"10.7551\/mitpress\/4175.001.0001"},{"key":"23_CR14","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.inffus.2013.04.006","volume":"16","author":"M Wo\u017aniak","year":"2014","unstructured":"Wo\u017aniak, M., Gra\u00f1a, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3\u201317 (2014)","journal-title":"Inf. Fusion"},{"key":"23_CR15","doi-asserted-by":"publisher","unstructured":"Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, NY (2012). https:\/\/doi.org\/10.1007\/978-1-4419-9326-7","DOI":"10.1007\/978-1-4419-9326-7"}],"container-title":["Lecture Notes in Computer Science","Intelligent Information and Database Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21967-2_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T08:13:55Z","timestamp":1670487235000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21967-2_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031219665","9783031219672"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21967-2_23","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"9 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACIIDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Intelligent Information and Database Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ho Chi Minh City","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aciids2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aciids.pwr.edu.pl\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}