{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T04:39:48Z","timestamp":1728535188779},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031219665"},{"type":"electronic","value":"9783031219672"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21967-2_22","type":"book-chapter","created":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T08:02:35Z","timestamp":1670486555000},"page":"269-281","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Graph Classification via Graph Structure Learning"],"prefix":"10.1007","author":[{"given":"Tu","family":"Huynh","sequence":"first","affiliation":[]},{"given":"Tuyen Thanh Thi","family":"Ho","sequence":"additional","affiliation":[]},{"given":"Bac","family":"Le","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,9]]},"reference":[{"issue":"D1","key":"22_CR1","doi-asserted-by":"publisher","first-page":"D607","DOI":"10.1093\/nar\/gky1131","volume":"47","author":"D Szklarczyk","year":"2019","unstructured":"Szklarczyk, D., et al.: STRING v11: protein\u2013protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607\u2013D613 (2019)","journal-title":"Nucleic Acids Res."},{"key":"22_CR2","doi-asserted-by":"crossref","unstructured":"Trinajstic, N.: Chemical Graph Theory. CRC Press (2018)","DOI":"10.1201\/9781315139111"},{"key":"22_CR3","doi-asserted-by":"publisher","first-page":"2108423","DOI":"10.1155\/2019\/2108423","volume":"2019","author":"CS Siew","year":"2019","unstructured":"Siew, C.S., Wulff, D.U., Beckage, N.M., Kenett, Y.N.: Cognitive network science: a review of research on cognition through the lens of network representations, processes, and dynamics. Complexity 2019, 2108423 (2019)","journal-title":"Complexity"},{"key":"22_CR4","doi-asserted-by":"crossref","unstructured":"Lanciano, T., Bonchi, F., Gionis, A.: Explainable classification of brain networks via contrast subgraphs. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3308\u20133318 (2020)","DOI":"10.1145\/3394486.3403383"},{"issue":"5","key":"22_CR5","volume":"8","author":"S Tabassum","year":"2018","unstructured":"Tabassum, S., Pereira, F.S., Fernandes, S., Gama, J.: Social network analysis: an overview. Wiley Interdisc. Rev.: Data Min. Knowl. Discovery 8(5), e1256 (2018)","journal-title":"Wiley Interdisc. Rev.: Data Min. Knowl. Discovery"},{"key":"22_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2019.112948","volume":"141","author":"X Chen","year":"2020","unstructured":"Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)","journal-title":"Expert Syst. Appl."},{"issue":"9","key":"22_CR7","doi-asserted-by":"publisher","first-page":"1332","DOI":"10.1093\/bioinformatics\/btaa834","volume":"37","author":"D Domingo-Fern\u00e1ndez","year":"2021","unstructured":"Domingo-Fern\u00e1ndez, D., et al.: COVID-19 knowledge graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology. Bioinformatics 37(9), 1332\u20131334 (2021)","journal-title":"Bioinformatics"},{"issue":"9","key":"22_CR8","first-page":"2539","volume":"12","author":"N Shervashidze","year":"2011","unstructured":"Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9), 2539\u20132561 (2011)","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"22_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s41109-019-0195-3","volume":"5","author":"NM Kriege","year":"2019","unstructured":"Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw. Sci. 5(1), 1\u201342 (2019). https:\/\/doi.org\/10.1007\/s41109-019-0195-3","journal-title":"Appl. Netw. Sci."},{"issue":"3","key":"22_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1961189.1961199","volume":"2","author":"CC Chang","year":"2011","unstructured":"Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst, Technol. (TIST) 2(3), 1\u201327 (2011)","journal-title":"ACM Trans. Intell. Syst, Technol. (TIST)"},{"key":"22_CR11","first-page":"1201","volume":"11","author":"SVN Vishwanathan","year":"2010","unstructured":"Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201\u20131242 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"22_CR12","unstructured":"Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining (ICDM\u201905), pp. 8-pp. IEEE (2005)"},{"key":"22_CR13","doi-asserted-by":"crossref","unstructured":"Nikolentzos, G., Meladianos, P., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.: Shortest-path graph kernels for document similarity. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1890\u20131900 (2017)","DOI":"10.18653\/v1\/D17-1202"},{"key":"22_CR14","doi-asserted-by":"crossref","unstructured":"Horv\u00e1th, T., G\u00e4rtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 158\u2013167 (2004)","DOI":"10.1145\/1014052.1014072"},{"key":"22_CR15","unstructured":"Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488\u2013495. PMLR (2009)"},{"key":"22_CR16","unstructured":"Ramon, J., G\u00e4rtner, T.: Expressivity versus efficiency of graph kernels. In: Proceedings of the First International Workshop on Mining Graphs, Trees and Sequences, pp. 65\u201374 (2003)"},{"key":"22_CR17","doi-asserted-by":"crossref","unstructured":"Fei, H., Huan, J.: Structure feature selection for graph classification. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 991\u20131000 (2008)","DOI":"10.1145\/1458082.1458212"},{"key":"22_CR18","doi-asserted-by":"crossref","unstructured":"Kong, X., Yu, P.S.: Semi-supervised feature selection for graph classification. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 793\u2013802 (2010)","DOI":"10.1145\/1835804.1835905"},{"issue":"3","key":"22_CR19","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1016\/0022-0000(88)90010-4","volume":"37","author":"U Sch\u00f6ning","year":"1988","unstructured":"Sch\u00f6ning, U.: Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci. 37(3), 312\u2013323 (1988)","journal-title":"J. Comput. Syst. Sci."},{"key":"22_CR20","unstructured":"Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188\u20131196. PMLR (2014)"},{"key":"22_CR21","doi-asserted-by":"crossref","unstructured":"Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365\u20131374 (2015)","DOI":"10.1145\/2783258.2783417"},{"key":"22_CR22","doi-asserted-by":"crossref","unstructured":"Al-Rfou, R., Perozzi, B., Zelle, D.: Ddgk: Learning graph representations for deep divergence graph kernels. In: The World Wide Web Conference, pp. 37\u201348 (2019)","DOI":"10.1145\/3308558.3313668"},{"key":"22_CR23","unstructured":"Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: International conference on machine learning, pp. 2186\u20132195. PMLR (2018)"},{"key":"22_CR24","doi-asserted-by":"crossref","unstructured":"Rousseau, F., Kiagias, E., Vazirgiannis, M.: Text categorization as a graph classification problem. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1702\u20131712 (2015)","DOI":"10.3115\/v1\/P15-1164"},{"issue":"1","key":"22_CR25","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1109\/TKDE.2016.2616305","volume":"29","author":"H Wang","year":"2016","unstructured":"Wang, H., et al.: Incremental subgraph feature selection for graph classification. IEEE Trans. Knowl. Data Eng. 29(1), 128\u2013142 (2016)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"22_CR26","unstructured":"Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: 2002 IEEE International Conference on Data Mining, 2002 Proceedings, pp. 721\u2013724. IEEE (2002)"},{"key":"22_CR27","doi-asserted-by":"crossref","unstructured":"Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the presence of isomorphism. In: Third IEEE International Conference on Data Mining, pp. 549\u2013552. IEEE (2003)","DOI":"10.1109\/ICDM.2003.1250974"}],"container-title":["Lecture Notes in Computer Science","Intelligent Information and Database Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21967-2_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T02:09:42Z","timestamp":1728526182000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21967-2_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031219665","9783031219672"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21967-2_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"9 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACIIDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Intelligent Information and Database Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ho Chi Minh City","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aciids2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aciids.pwr.edu.pl\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}