{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:04:03Z","timestamp":1726182243301},"publisher-location":"Cham","reference-count":13,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031219665"},{"type":"electronic","value":"9783031219672"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21967-2_1","type":"book-chapter","created":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T03:02:35Z","timestamp":1670468555000},"page":"3-12","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Machine Learning or\u00a0Lexicon Based Sentiment Analysis Techniques on\u00a0Social Media Posts"],"prefix":"10.1007","author":[{"given":"David L.","family":"John","sequence":"first","affiliation":[]},{"given":"Bela","family":"Stantic","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,9]]},"reference":[{"issue":"2","key":"1_CR1","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1177\/0047287517747753","volume":"58","author":"AR Alaei","year":"2019","unstructured":"Alaei, A.R., Becken, S., Stantic, B.: Sentiment analysis in tourism: capitalizing on big data. J. Travel Res. 58(2), 175\u2013191 (2019)","journal-title":"J. Travel Res."},{"key":"1_CR2","unstructured":"AliciaAdamczyk: What\u2019s behind dogecoin\u2019s price surge-and why seemingly unrelated brands are capitalizing on its popularity (May 2021). https:\/\/www.cnbc.com\/2021\/05\/12\/dogecoin-price-surge-elon-musk-slim-jim.html"},{"key":"1_CR3","unstructured":"Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Lrec, vol. 10, pp. 2200\u20132204 (2010)"},{"key":"1_CR4","doi-asserted-by":"publisher","unstructured":"Cagan, T., Frank, S.L., Tsarfaty, R.: Generating subjective responses to opinionated articles in social media: An agenda-driven architecture and a Turing-like test. In: Proceedings of the Joint Workshop on Social Dynamics and Personal Attributes in Social Media, pp. 58\u201367. Association for Computational Linguistics, Baltimore, Maryland (Jun 2014). https:\/\/doi.org\/10.3115\/v1\/W14-2708, https:\/\/aclanthology.org\/W14-2708","DOI":"10.3115\/v1\/W14-2708"},{"issue":"2","key":"1_CR5","doi-asserted-by":"publisher","first-page":"639","DOI":"10.2298\/CSIS181015013C","volume":"16","author":"J Chen","year":"2019","unstructured":"Chen, J., Becken, S., Stantic, B.: Lexicon based chinese language sentiment analysis method. Comput. Sci. Inf. Syst. 16(2), 639\u2013655 (2019)","journal-title":"Comput. Sci. Inf. Syst."},{"key":"1_CR6","doi-asserted-by":"crossref","unstructured":"Hutto, C., Gilbert, E.: Vader: A parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 8 (2014)","DOI":"10.1609\/icwsm.v8i1.14550"},{"key":"1_CR7","unstructured":"Kathuria, P.: Sentiment classification using wsd, maximum entropy and naive bayes classifiers (2014). https:\/\/github.com\/kevincobain2000\/sentiment_classifier"},{"key":"1_CR8","unstructured":"Learn, M.: Sentiment analysis: The go-to guide (2021). https:\/\/monkeylearn.com\/sentiment-analysis\/"},{"key":"1_CR9","doi-asserted-by":"crossref","unstructured":"Liu, B.: Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press (2020)","DOI":"10.1017\/9781108639286"},{"issue":"2010","key":"1_CR10","first-page":"627","volume":"2","author":"B Liu","year":"2010","unstructured":"Liu, B., et al.: Sentiment analysis and subjectivity. Handbook Nat. Lang. Process. 2(2010), 627\u2013666 (2010)","journal-title":"Handbook Nat. Lang. Process."},{"key":"1_CR11","unstructured":"Pathmind: A beginner\u2019s guide to neural networks and deep learning (2021). https:\/\/wiki.pathmind.com\/neural-network"},{"key":"1_CR12","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1016\/j.future.2020.01.005","volume":"106","author":"GA Ruz","year":"2020","unstructured":"Ruz, G.A., Henr\u00edquez, P.A., Mascare\u00f1o, A.: Sentiment analysis of twitter data during critical events through bayesian networks classifiers. Futur. Gener. Comput. Syst. 106, 92\u2013104 (2020)","journal-title":"Futur. Gener. Comput. Syst."},{"key":"1_CR13","unstructured":"Stantic, B., Mandal, R., Chen, J.: Target sentiment and target analysis. Report to the National Environmental Science Program (2020) https:\/\/nesptropical.edu.au\/wpcontent\/uploads\/2020\/02\/NESPTWQ-Project5.5-TechnicalReport1.pdf"}],"container-title":["Lecture Notes in Computer Science","Intelligent Information and Database Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21967-2_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T03:10:41Z","timestamp":1670469041000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21967-2_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031219665","9783031219672"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21967-2_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"9 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACIIDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Intelligent Information and Database Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ho Chi Minh City","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aciids2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aciids.pwr.edu.pl\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}