{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:25:24Z","timestamp":1742912724195,"version":"3.40.3"},"publisher-location":"Cham","reference-count":67,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031217067"},{"type":"electronic","value":"9783031217074"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21707-4_30","type":"book-chapter","created":{"date-parts":[[2022,11,24]],"date-time":"2022-11-24T18:52:04Z","timestamp":1669315924000},"page":"421-440","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":13,"title":["Hey ASR System! Why Aren\u2019t You More Inclusive?"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9696-2372","authenticated-orcid":false,"given":"Mikel K.","family":"Ngueajio","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8524-3559","authenticated-orcid":false,"given":"Gloria","family":"Washington","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,25]]},"reference":[{"key":"30_CR1","unstructured":"Perez, S.: Report: Voice assistants in use to triple to 8 billion by 2023 (March 2019). https:\/\/techcrunch.com\/2019\/02\/12\/report-voice-assistants-in-use-to-triple-to-8-billion-by-2023\/. Accessed 17 Mar 2022"},{"key":"30_CR2","unstructured":"The Smart Audio Report | National Public Media. National Public Media. https:\/\/www.nationalpublicmedia.com\/insights\/reports\/smart-audio-report\/. Accessed 9 Mar 2022"},{"key":"30_CR3","unstructured":"Smart speakers: why sales are rocketing despite all our privacy fears: The Conversation (n.d.). https:\/\/theconversation.com\/smart-speakers-why-sales-are-rocketing-despite-all-our-privacy-fears-145781"},{"key":"30_CR4","unstructured":"Beyond the Bot: Virtual assistant success in patient engagement and boosting post-pandemic revenue. Mgma.com (2022). https:\/\/www.mgma.com\/resources\/health-information-technology\/beyond-the-bot-virtual-assistant-success-in-patients. Accessed 9 Mar 2022"},{"key":"30_CR5","doi-asserted-by":"crossref","unstructured":"Dastin, J.: Amazon scraps secret AI recruiting tool that showed bias against women. In: Ethics of Data and Analytics, pp. 296\u2013299. Auerbach Publications (2018)","DOI":"10.1201\/9781003278290-44"},{"key":"30_CR6","unstructured":"Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability, and Transparency, pp. 77\u201391. PMLR (2018)"},{"key":"30_CR7","doi-asserted-by":"publisher","DOI":"10.2307\/j.ctt1pwt9w5","volume-title":"Algorithms of Oppression","author":"SU Noble","year":"2018","unstructured":"Noble, S.U.: Algorithms of Oppression. New York University Press, New York (2018)"},{"key":"30_CR8","unstructured":"Langston, J.: Who\u2019s a CEO? Google image results can shift gender biases. UW News (April 2015)"},{"key":"30_CR9","unstructured":"Why Can\u2019t This Soap Dispenser Identify Dark Skin? Gizmodo. https:\/\/gizmodo.com\/why-cant-this-soap-dispenser-identify-dark-skin-1797931773. Accessed 9 Mar 2022"},{"key":"30_CR10","doi-asserted-by":"crossref","unstructured":"Blodgett, S.L., Barocas, S., Daum\u00e9 III, H., Wallach, H.: Language (technology) is power: a critical survey of \u201cbias\u201d in nlp. arXiv preprint arXiv:2005.14050 (2020)","DOI":"10.18653\/v1\/2020.acl-main.485"},{"key":"30_CR11","unstructured":"Sun, T., et al.: Mitigating gender bias in natural language processing: literature review. arXiv preprint arXiv:1906.08976 (2019)"},{"issue":"7","key":"30_CR12","doi-asserted-by":"publisher","first-page":"3184","DOI":"10.3390\/app11073184","volume":"11","author":"I Garrido-Mu\u00f1oz","year":"2021","unstructured":"Garrido-Mu\u00f1oz, I., Montejo-R\u00e1ez, A., Mart\u00ednez-Santiago, F., Ure\u00f1a-L\u00f3pez, L.A.: A survey on bias in deep NLP. Appl. Sci. 11(7), 3184 (2021)","journal-title":"Appl. Sci."},{"issue":"14","key":"30_CR13","doi-asserted-by":"publisher","first-page":"7684","DOI":"10.1073\/pnas.1915768117","volume":"117","author":"A Koenecke","year":"2020","unstructured":"Koenecke, A., et al.: Racial disparities in automated speech recognition. Proc. Natl. Acad. Sci. 117(14), 7684\u20137689 (2020)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"30_CR14","doi-asserted-by":"crossref","unstructured":"Martin, J.L., Tang, K.: Understanding racial disparities in automatic speech recognition: the case of habitual \u201cbe\u201d. In: INTERSPEECH, pp. 626\u2013630 (2020)","DOI":"10.21437\/Interspeech.2020-2893"},{"key":"30_CR15","unstructured":"Hannun, A., et al.: Deep speech: scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567 (2014)"},{"key":"30_CR16","doi-asserted-by":"crossref","unstructured":"Mengesha, Z., Heldreth, C., Lahav, M., Sublewski, J., Tuennerman, E.: I don\u2019t think these devices are very culturally sensitive.\u2014impact of automated speech recognition errors on African Americans. Front. Artif. Intell. 4, 169 (2021)","DOI":"10.3389\/frai.2021.725911"},{"key":"30_CR17","doi-asserted-by":"crossref","unstructured":"Wu, Y., et al.: See what I\u2019m saying? Comparing intelligent personal assistant use for native and non-native language speakers. In: 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 1\u20139 (October 2020)","DOI":"10.1145\/3379503.3403563"},{"key":"30_CR18","doi-asserted-by":"crossref","unstructured":"Pyae, A., Scifleet, P.: Investigating differences between native English and non-native English speakers in interacting with a voice user interface: a case of Google Home. In: Proceedings of the 30th Australian Conference on Computer-Human Interaction, pp. 548\u2013553 (December 2018)","DOI":"10.1145\/3292147.3292236"},{"key":"30_CR19","unstructured":"Paul, S.: Wired Magazine. Voice Is the Next Big Platform, Unless You Have an Accent (2017). https:\/\/www.wired.com\/2017\/03\/voice-is-the-next-big-platform-unless-you-have-an-accent\/. Accessed 21 Feb 2022"},{"key":"30_CR20","doi-asserted-by":"crossref","unstructured":"Tatman, R., Kasten, C.: Effects of talker dialect, gender & race on accuracy of bing speech and YouTube automatic captions. In: Interspeech, pp. 934\u2013938 (August 2017)","DOI":"10.21437\/Interspeech.2017-1746"},{"key":"30_CR21","unstructured":"Harwell, D.: The accent gap. The Washington Post (2018)"},{"key":"30_CR22","doi-asserted-by":"crossref","unstructured":"Lima, L., Furtado, V., Furtado, E., Almeida, V.: Empirical analysis of bias in voice-based personal assistants. In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 533\u2013538 (May 2019)","DOI":"10.1145\/3308560.3317597"},{"key":"30_CR23","unstructured":"West, M., Kraut, R., Ei Chew, H.: I\u2019d blush if I could: closing gender divides in digital skills through education (2019)"},{"key":"30_CR24","unstructured":"Fessler, L.: We tested bots like Siri and Alexa to see who would stand up to sexual harassment. Quartz Magazine (2017)"},{"key":"30_CR25","volume-title":"How AI Bots and Voice Assistants Reinforce Gender Bias","author":"C Chin","year":"2020","unstructured":"Chin, C., Robison, M.: How AI Bots and Voice Assistants Reinforce Gender Bias. Brookings, USA (2020)"},{"key":"30_CR26","unstructured":"Fessler, L.: Amazon\u2019s Alexa is now a feminist, and she\u2019s sorry if that upsets you. Quartz (17 January 2018)"},{"key":"30_CR27","doi-asserted-by":"crossref","unstructured":"Tatman, R.: Gender and dialect bias in YouTube\u2019s automatic captions. In: Proceedings of the First ACL Workshop on Ethics in Natural Language Processing, pp. 53\u201359 (April 2017)","DOI":"10.18653\/v1\/W17-1606"},{"key":"30_CR28","doi-asserted-by":"crossref","unstructured":"Huang, W.C., Wu, C.H., Luo, S.B., Chen, K.Y., Wang, H.M., Toda, T.: Speech recognition by simply fine-tuning BERT. In: ICASSP 2021\u20132021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 7343\u20137347. IEEE (June 2021)","DOI":"10.1109\/ICASSP39728.2021.9413668"},{"key":"30_CR29","unstructured":"Yu, F.H., Chen, K.Y.: Non-autoregressive transformer-based end-to-end ASR using BERT. arXiv preprint arXiv:2104.04805 (2021)"},{"key":"30_CR30","doi-asserted-by":"crossref","unstructured":"Babaeianjelodar, M., Lorenz, S., Gordon, J., Matthews, J., Freitag, E.: Quantifying gender bias in different corpora. In: Companion Proceedings of the Web Conference 2020, pp. 752\u2013759 (April 2020)","DOI":"10.1145\/3366424.3383559"},{"key":"30_CR31","unstructured":"Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"30_CR32","doi-asserted-by":"crossref","unstructured":"Garnerin, M., Rossato, S., Besacier, L.: Gender representation in French broadcast corpora and its impact on ASR performance. In: Proceedings of the 1st International Workshop on AI for Smart TV Content Production, Access and Delivery, pp. 3\u20139 (October 2019)","DOI":"10.1145\/3347449.3357480"},{"key":"30_CR33","unstructured":"Povey, D., et al.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding (No. CONF). IEEE Signal Processing Society (2011)"},{"key":"30_CR34","doi-asserted-by":"crossref","unstructured":"Garnerin, M., Rossato, S., Besacier, L.: Investigating the impact of gender representation in ASR training data: a case study on Librispeech. In: 3rd Workshop on Gender Bias in Natural Language Processing, pp. 86\u201392. Association for Computational Linguistics (August 2021)","DOI":"10.18653\/v1\/2021.gebnlp-1.10"},{"key":"30_CR35","unstructured":"Sawalha, M., Abu Shariah, M.: The effects of speakers\u2019 gender, age, and region on overall performance of Arabic automatic speech recognition systems using the phonetically rich and balanced Modern Standard Arabic speech corpus. In: Proceedings of the 2nd Workshop of Arabic Corpus Linguistics WACL-2. Leeds (2013)"},{"key":"30_CR36","unstructured":"Feng, S., Kudina, O., Halpern, B.M., Scharenborg, O.: Quantifying bias in automatic speech recognition. arXiv preprint arXiv:2103.15122 (2021)"},{"key":"30_CR37","unstructured":"Smith, A.: US Smartphone Use in 2015 (1 April 2015). http:\/\/www.pewinternet.org\/2015\/04\/01\/us-smartphone-use-in-2015\/. Accessed 24 Feb 2022"},{"issue":"9","key":"30_CR38","doi-asserted-by":"publisher","first-page":"e9705","DOI":"10.2196\/mhealth.9705","volume":"6","author":"AE Chung","year":"2018","unstructured":"Chung, A.E., Griffin, A.C., Selezneva, D., Gotz, D.: Health and fitness apps for hands-free voice-activated assistants: content analysis. JMIR Mhealth Uhealth 6(9), e9705 (2018)","journal-title":"JMIR Mhealth Uhealth"},{"key":"30_CR39","unstructured":"Jeffs, M.: Ok google, Siri, Alexa, Cortana; can you tell me some stats on voice search. The Editr Blog (January 2018)"},{"issue":"9","key":"30_CR40","doi-asserted-by":"publisher","first-page":"e11510","DOI":"10.2196\/11510","volume":"20","author":"TW Bickmore","year":"2018","unstructured":"Bickmore, T.W., et al.: Patient and consumer safety risks when using conversational assistants for medical information: an observational study of Siri, Alexa, and Google Assistant. J. Med. Internet Res. 20(9), e11510 (2018)","journal-title":"J. Med. Internet Res."},{"issue":"1","key":"30_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41746-019-0215-9","volume":"3","author":"AL Nobles","year":"2020","unstructured":"Nobles, A.L., Leas, E.C., Caputi, T.L., Zhu, S.H., Strathdee, S.A., Ayers, J.W.: Responses to addiction help-seeking from Alexa, Siri, Google Assistant, Cortana, and Bixby intelligent virtual assistants. NPJ Digit. Med. 3(1), 1\u20133 (2020)","journal-title":"NPJ Digit. Med."},{"key":"30_CR42","doi-asserted-by":"crossref","unstructured":"Tu, M., Wisler, A., Berisha, V., Liss, J.M.: The relationship between perceptual disturbances in dysarthric speech and automatic speech recognition performance. J. Acoust. Soc. Am. 140(5), EL416\u2013EL422 (2016)","DOI":"10.1121\/1.4967208"},{"key":"30_CR43","doi-asserted-by":"crossref","unstructured":"Moro-Velazquez, L., et al.: Study of the performance of automatic speech recognition systems in speakers with Parkinson\u2019s disease. In: Interspeech, pp. 3875\u20133879 (January 2019)","DOI":"10.21437\/Interspeech.2019-2993"},{"key":"30_CR44","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1016\/j.bspc.2018.10.020","volume":"48","author":"L Moro-Velazquez","year":"2019","unstructured":"Moro-Velazquez, L., et al.: A forced Gaussians based methodology for the differential evaluation of Parkinson\u2019s disease by means of speech processing. Biomed. Signal Process. Control 48, 205\u2013220 (2019)","journal-title":"Biomed. Signal Process. Control"},{"key":"30_CR45","doi-asserted-by":"crossref","unstructured":"Watanabe, S., et al.: Espnet: end-to-end speech processing toolkit.\u00a0arXiv preprint arXiv:1804.00015 (2018)","DOI":"10.21437\/Interspeech.2018-1456"},{"issue":"7\u20138","key":"30_CR46","doi-asserted-by":"publisher","first-page":"953","DOI":"10.1080\/01690965.2012.705006","volume":"27","author":"SL Mattys","year":"2012","unstructured":"Mattys, S.L., Davis, M.H., Bradlow, A.R., Scott, S.K.: Speech recognition in adverse conditions: a review. Lang. Cognit. Process. 27(7\u20138), 953\u2013978 (2012)","journal-title":"Lang. Cognit. Process."},{"key":"30_CR47","doi-asserted-by":"crossref","unstructured":"Glasser, A., Kushalnagar, K., Kushalnagar, R.: Deaf, hard of hearing, and hearing perspectives on using automatic speech recognition in conversation. In: Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 427\u2013432 (October 2017)","DOI":"10.1145\/3132525.3134781"},{"key":"30_CR48","doi-asserted-by":"crossref","unstructured":"Fok, R., Kaur, H., Palani, S., Mott, M.E., Lasecki, W.S.: Towards more robust speech interactions for deaf and hard of hearing users. In: Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 57\u201367 (October 2018)","DOI":"10.1145\/3234695.3236343"},{"key":"30_CR49","unstructured":"Magner, M.E.: A speech intelligibility test for deaf children. Clarke School for the Deaf (1980)"},{"issue":"3","key":"30_CR50","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1007\/s10772-021-09836-w","volume":"24","author":"BG Schultz","year":"2021","unstructured":"Schultz, B.G., et al.: Automatic speech recognition in neurodegenerative disease. Int. J. Speech Technol. 24(3), 771\u2013779 (2021). https:\/\/doi.org\/10.1007\/s10772-021-09836-w","journal-title":"Int. J. Speech Technol."},{"key":"30_CR51","doi-asserted-by":"crossref","unstructured":"Guo, A., Kamar, E., Vaughan, J.W., Wallach, H., Morris, M.R.: Toward fairness in AI for people with disabilities SBG@ a research roadmap. ACM SIGACCESS Access. Comput. 2020(125), 1\u20131 (2020)","DOI":"10.1145\/3386296.3386298"},{"issue":"3","key":"30_CR52","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1145\/3362077.3362086","volume":"5","author":"S Trewin","year":"2019","unstructured":"Trewin, S., et al.: Considerations for AI fairness for people with disabilities. AI Matters 5(3), 40\u201363 (2019)","journal-title":"AI Matters"},{"key":"30_CR53","doi-asserted-by":"crossref","unstructured":"Vtyurina, A., Fourney, A., Morris, M.R., Findlater, L., White, R.W.: Bridging screen readers and voice assistants for enhanced eyes-free web search. In: The World Wide Web Conference, pp. 3590\u20133594 (May 2019)","DOI":"10.1145\/3308558.3314136"},{"key":"30_CR54","doi-asserted-by":"crossref","unstructured":"Abdolrahmani, A., Kuber, R., Branham, S.M.: \u201cSiri Talks at You\u201d an empirical investigation of voice-activated personal assistant (VAPA) usage by individuals who are blind. In: Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 249\u2013258 (October 2018)","DOI":"10.1145\/3234695.3236344"},{"key":"30_CR55","doi-asserted-by":"crossref","unstructured":"Branham, S.M., Mukkath Roy, A.R.: Reading between the guidelines: how commercial voice assistant guidelines hinder accessibility for blind users. In: The 21st International ACM SIGACCESS Conference on Computers and Accessibility, pp. 446\u2013458 (October 2019)","DOI":"10.1145\/3308561.3353797"},{"key":"30_CR56","doi-asserted-by":"crossref","unstructured":"Liu, Z., Veliche, I.E., Peng, F.: Model-based approach for measuring the fairness in ASR. In: ICASSP 2022\u20132022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6532\u20136536. IEEE (May 2022)","DOI":"10.1109\/ICASSP43922.2022.9747654"},{"key":"30_CR57","unstructured":"Meyer, J., Rauchenstein, L., Eisenberg, J.D., Howell, N.: Artie bias corpus: an open dataset for detecting demographic bias in speech applications. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 6462\u20136468 (May 2020)"},{"key":"30_CR58","doi-asserted-by":"crossref","unstructured":"Liu, C., et al.: Towards measuring fairness in speech recognition: casual conversations dataset transcriptions. In: ICASSP 2022\u20132022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6162\u20136166. IEEE (May 2022)","DOI":"10.1109\/ICASSP43922.2022.9747501"},{"key":"30_CR59","doi-asserted-by":"publisher","first-page":"3515","DOI":"10.1109\/TASLP.2021.3126949","volume":"29","author":"L Sar\u0131","year":"2021","unstructured":"Sar\u0131, L., Hasegawa-Johnson, M., Yoo, C.D.: Counterfactually fair automatic speech recognition. IEEE\/ACM Trans. Audio Speech Lang. Process. 29, 3515\u20133525 (2021)","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"30_CR60","doi-asserted-by":"crossref","unstructured":"Oladipo, F.O., Habeeb, R.A., Musa, A.E., Umezuruike, C., Adeiza, O.A.: Automatic Speech Recognition and Accent Identification of Ethnically Diverse Nigerian English Speakers (2021)","DOI":"10.2139\/ssrn.3666815"},{"key":"30_CR61","doi-asserted-by":"crossref","unstructured":"Singh, M.T., Fayjie, A.R., Kachari, B.: Speech recognition system for north-east Indian accent. In: International Journal of Applied Information Systems (IJAIS), vol. 9, no. 4. Foundation of Computer Science FCS (2015)","DOI":"10.5120\/ijais15-451398"},{"key":"30_CR62","doi-asserted-by":"crossref","unstructured":"Winata, G.I., et al.: Learning fast adaptation on cross-accented speech recognition.\u00a0arXiv preprint arXiv:2003.01901 (2020)","DOI":"10.21437\/Interspeech.2020-45"},{"key":"30_CR63","doi-asserted-by":"crossref","unstructured":"Sriranjani, R., Reddy, M.R., Umesh, S.: Improved acoustic modeling for automatic dysarthric speech recognition. In: 2015 Twenty First National Conference on Communications (NCC), pp. 1\u20136. IEEE (2015)","DOI":"10.1109\/NCC.2015.7084856"},{"key":"30_CR64","doi-asserted-by":"crossref","unstructured":"Paul, D.B., Baker, J.: The design for the wall street journal-based CSR corpus. In: Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New York, February 23\u201326 (1992)","DOI":"10.3115\/1075527.1075614"},{"key":"30_CR65","doi-asserted-by":"crossref","unstructured":"Menendez-Pidal, X., Polikoff, J.B., Peters, S.M., Leonzio, J.E., Bunnell, H.T.: The Nemours database of dysarthric speech. In: Proceeding of Fourth International Conference on Spoken Language Processing, ICSLP 1996, vol. 3, pp. 1962\u20131965. IEEE (October 1996)","DOI":"10.21437\/ICSLP.1996-503"},{"key":"30_CR66","doi-asserted-by":"crossref","unstructured":"Kim, M.J., Yoo, J., Kim, H.: Dysarthric speech recognition using dysarthria-severity-dependent and speaker-adaptive models. In: Interspeech, pp. 3622\u20133626 (August 2013)","DOI":"10.21437\/Interspeech.2013-320"},{"key":"30_CR67","unstructured":"Costa-juss\u00e0, M.R., Basta, C., G\u00e1llego, G.I.: Evaluating gender bias in speech translation.\u00a0arXiv preprint arXiv:2010.14465 (2020)"}],"container-title":["Lecture Notes in Computer Science","HCI International 2022 \u2013 Late Breaking Papers: Interacting with eXtended Reality and Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21707-4_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,24]],"date-time":"2022-11-24T19:03:46Z","timestamp":1669316626000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21707-4_30"}},"subtitle":["Automatic Speech Recognition Systems\u2019 Bias and Proposed Bias Mitigation Techniques. A Literature Review"],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031217067","9783031217074"],"references-count":67,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21707-4_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"25 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HCII","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Human-Computer Interaction","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hcii2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2022.hci.international\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}