{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T04:35:52Z","timestamp":1728448552500},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031216855"},{"type":"electronic","value":"9783031216862"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21686-2_13","type":"book-chapter","created":{"date-parts":[[2022,11,18]],"date-time":"2022-11-18T08:30:15Z","timestamp":1668760215000},"page":"180-194","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Towards a Better Understanding of Heuristic Approaches Applied to the Biological Motif Discovery"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2289-882X","authenticated-orcid":false,"given":"Jader M. Caldonazzo","family":"Garbelini","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8972-5221","authenticated-orcid":false,"given":"Danilo Sipoli","family":"Sanches","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5808-3919","authenticated-orcid":false,"given":"Aurora Trinidad Ramirez","family":"Pozo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,19]]},"reference":[{"key":"13_CR1","doi-asserted-by":"crossref","unstructured":"Ashraf, F.B., Shafi, M.S.R.: MFEA: an evolutionary approach for motif finding in DNA sequences. Inf. Med. Unlocked 21 (2020)","DOI":"10.1016\/j.imu.2020.100466"},{"issue":"18","key":"13_CR2","doi-asserted-by":"publisher","first-page":"2834","DOI":"10.1093\/bioinformatics\/btab203","volume":"37","author":"TL Bailey","year":"2021","unstructured":"Bailey, T.L.: Streme: accurate and versatile sequence motif discovery. Bioinformatics 37(18), 2834\u20132840 (2021)","journal-title":"Bioinformatics"},{"issue":"1\u20132","key":"13_CR3","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1007\/BF00993379","volume":"21","author":"TL Bailey","year":"1995","unstructured":"Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach. Learn. 21(1\u20132), 51\u201380 (1995)","journal-title":"Mach. Learn."},{"issue":"W1","key":"13_CR4","doi-asserted-by":"publisher","first-page":"W39","DOI":"10.1093\/nar\/gkv416","volume":"43","author":"TL Bailey","year":"2015","unstructured":"Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S.: The meme suite. Nucleic Acids Res. 43(W1), W39\u2013W49 (2015)","journal-title":"Nucleic Acids Res."},{"key":"13_CR5","doi-asserted-by":"crossref","unstructured":"D\u2019haeseleer, P.: How does DNA sequence motif discovery work? Nature Biotechnol. 24(8), 959\u2013961 (2006)","DOI":"10.1038\/nbt0806-959"},{"key":"13_CR6","doi-asserted-by":"crossref","unstructured":"D\u2019haeseleer, P.: What are DNA sequence motifs? Nature Biotechnol. 24(4), 423\u2013425 (2006)","DOI":"10.1038\/nbt0406-423"},{"issue":"2","key":"13_CR7","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/BF01096763","volume":"6","author":"TA Feo","year":"1995","unstructured":"Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optimiz. 6(2), 109\u2013133 (1995)","journal-title":"J. Global Optimiz."},{"issue":"3","key":"13_CR8","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/0167-6377(87)90021-6","volume":"6","author":"JP Hart","year":"1987","unstructured":"Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6(3), 107\u2013114 (1987)","journal-title":"Oper. Res. Lett."},{"key":"13_CR9","doi-asserted-by":"crossref","unstructured":"He, Y., Shen, Z., Zhang, Q., Wang, S., Huang, D.S.: A survey on deep learning in DNA\/RNA motif mining. Brief. Bioinf. 22(4), bbaa229 (2021)","DOI":"10.1093\/bib\/bbaa229"},{"key":"13_CR10","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.ins.2018.07.004","volume":"466","author":"NK Lee","year":"2018","unstructured":"Lee, N.K., Li, X., Wang, D.: A comprehensive survey on genetic algorithms for DNA motif prediction. Inf. Sci. 466, 25\u201343 (2018)","journal-title":"Inf. Sci."},{"key":"13_CR11","doi-asserted-by":"crossref","unstructured":"Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. In: Proceedings of The Thirty-first Annual ACM Symposium on Theory of Computing, pp. 473\u2013482. ACM (1999)","DOI":"10.1145\/301250.301376"},{"key":"13_CR12","doi-asserted-by":"crossref","unstructured":"Lihu, A., Holban, \u015e.: A review of ensemble methods for de novo motif discovery in chip-seq data. Briefings in bioinformatics p. bbv022 (2015)","DOI":"10.1093\/bib\/bbv022"},{"key":"13_CR13","doi-asserted-by":"crossref","unstructured":"Liu, F.F., Tsai, J.J., Chen, R.M., Chen, S., Shih, S.: FMGA: finding motifs by genetic algorithm. In: Fourth IEEE Symposium on Bioinformatics and Bioengineering, BIBE 2004. Proceedings, pp. 459\u2013466. IEEE (2004)","DOI":"10.1109\/BIBE.2004.1317378"},{"key":"13_CR14","doi-asserted-by":"publisher","unstructured":"Louren\u00e7o, H.R., Martin, O.C., St\u00fctzle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 129\u2013168. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-319-91086-4_5","DOI":"10.1007\/978-3-319-91086-4_5"},{"issue":"11","key":"13_CR15","doi-asserted-by":"publisher","first-page":"1097","DOI":"10.1016\/S0305-0548(97)00031-2","volume":"24","author":"N Mladenovi\u0107","year":"1997","unstructured":"Mladenovi\u0107, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097\u20131100 (1997)","journal-title":"Comput. Oper. Res."},{"issue":"suppl 1","key":"13_CR16","doi-asserted-by":"publisher","first-page":"S207","DOI":"10.1093\/bioinformatics\/17.suppl_1.S207","volume":"17","author":"G Pavesi","year":"2001","unstructured":"Pavesi, G., Mauri, G., Pesole, G.: An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(suppl 1), S207\u2013S214 (2001)","journal-title":"Bioinformatics"},{"issue":"suppl 1","key":"13_CR17","doi-asserted-by":"publisher","first-page":"D91","DOI":"10.1093\/nar\/gkh012","volume":"32","author":"A Sandelin","year":"2004","unstructured":"Sandelin, A., Alkema, W., Engstr\u00f6m, P., Wasserman, W.W., Lenhard, B.: Jaspar: an open-access database for eukaryotic transcription factor binding profiles. Nucleic acids Res. 32(suppl 1), D91\u2013D94 (2004)","journal-title":"Nucleic acids Res."},{"key":"13_CR18","doi-asserted-by":"crossref","unstructured":"Sandve, G.K., Drabl\u00f8s, F.: A survey of motif discovery methods in an integrated framework. Biol. Direct 1(1), 11 (2006)","DOI":"10.1186\/1745-6150-1-11"},{"issue":"4","key":"13_CR19","doi-asserted-by":"publisher","first-page":"1183","DOI":"10.1073\/pnas.86.4.1183","volume":"86","author":"GD Stormo","year":"1989","unstructured":"Stormo, G.D., Hartzell, G.W.: Identifying protein-binding sites from unaligned DNA fragments. Proc. Natl. Acad. Sci. 86(4), 1183\u20131187 (1989)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"13_CR20","unstructured":"St\u00fctzle, T.: Local search algorithms for combinatorial problems. Darmstadt University of Technology PhD Thesis, p. 20 (1998)"},{"issue":"5","key":"13_CR21","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1023\/A:1016540724870","volume":"8","author":"EG Talbi","year":"2002","unstructured":"Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heurist. 8(5), 541\u2013564 (2002)","journal-title":"J. Heurist."},{"key":"13_CR22","doi-asserted-by":"crossref","unstructured":"Thijs, G., et al.: A higher-order background model improves the detection of promoter regulatory elements by gibbs sampling. Bioinformatics 17(12), 1113\u20131122 (2001)","DOI":"10.1093\/bioinformatics\/17.12.1113"},{"key":"13_CR23","doi-asserted-by":"crossref","unstructured":"Tompa, M., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23(1), 137\u2013144 (2005)","DOI":"10.1038\/nbt1053"}],"container-title":["Lecture Notes in Computer Science","Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21686-2_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T01:13:53Z","timestamp":1728436433000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21686-2_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031216855","9783031216862"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21686-2_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"19 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BRACIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brazilian Conference on Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Campinas","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brazil","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 December 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bracis2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www2.sbc.org.br\/bracis2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"JEMS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"225","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"89","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}