{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,11]],"date-time":"2024-10-11T04:17:32Z","timestamp":1728620252566},"publisher-location":"Cham","reference-count":46,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031212215"},{"type":"electronic","value":"9783031212222"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21222-2_7","type":"book-chapter","created":{"date-parts":[[2022,12,15]],"date-time":"2022-12-15T09:04:55Z","timestamp":1671095095000},"page":"96-130","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Self-correcting Neural Networks for\u00a0Safe Classification"],"prefix":"10.1007","author":[{"given":"Klas","family":"Leino","sequence":"first","affiliation":[]},{"given":"Aymeric","family":"Fromherz","sequence":"additional","affiliation":[]},{"given":"Ravi","family":"Mangal","sequence":"additional","affiliation":[]},{"given":"Matt","family":"Fredrikson","sequence":"additional","affiliation":[]},{"given":"Bryan","family":"Parno","sequence":"additional","affiliation":[]},{"given":"Corina","family":"P\u0103s\u0103reanu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,16]]},"reference":[{"unstructured":"Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265\u2013283 (2016)","key":"7_CR1"},{"doi-asserted-by":"crossref","unstructured":"Alshiekh, M., Bloem, R., Ehlers, R., K\u00f6nighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)","key":"7_CR2","DOI":"10.1609\/aaai.v32i1.11797"},{"doi-asserted-by":"publisher","unstructured":"Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a synergistic approach for analyzing neural network robustness. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, pp. 731\u2013744. Association for Computing Machinery, New York (2019). https:\/\/doi.org\/10.1145\/3314221.3314614","key":"7_CR3","DOI":"10.1145\/3314221.3314614"},{"unstructured":"Anil, C., Lucas, J., Grosse, R.: Sorting out Lipschitz function approximation. In: International Conference on Machine Learning, pp. 291\u2013301. PMLR (2019)","key":"7_CR4"},{"doi-asserted-by":"crossref","unstructured":"Berger, E.D., Zorn, B.G.: DieHard: probabilistic memory safety for unsafe languages. In: Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2006, pp. 158\u2013168. Association for Computing Machinery, New York (2006)","key":"7_CR5","DOI":"10.1145\/1133255.1134000"},{"key":"7_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1007\/978-3-662-46681-0_51","volume-title":"Tools and Algorithms for the Construction and Analysis of Systems","author":"R Bloem","year":"2015","unstructured":"Bloem, R., K\u00f6nighofer, B., K\u00f6nighofer, R., Wang, C.: Shield synthesis: In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 533\u2013548. Springer, Heidelberg (2015). https:\/\/doi.org\/10.1007\/978-3-662-46681-0_51"},{"unstructured":"Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)","key":"7_CR7"},{"doi-asserted-by":"publisher","unstructured":"Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 2008 21st IEEE Computer Security Foundations Symposium, pp. 51\u201365 (2008). https:\/\/doi.org\/10.1109\/CSF.2008.7","key":"7_CR8","DOI":"10.1109\/CSF.2008.7"},{"key":"7_CR9","doi-asserted-by":"publisher","first-page":"657","DOI":"10.1137\/0210049","volume":"10","author":"E Dekel","year":"1981","unstructured":"Dekel, E., Nassimi, D., Sahni, S.: Parallel matrix and graph algorithms. SIAM J. Comput. 10, 657\u2013675 (1981)","journal-title":"SIAM J. Comput."},{"unstructured":"Donti, P.L., Roderick, M., Fazlyab, M., Kolter, J.Z.: Enforcing robust control guarantees within neural network policies. In: International Conference on Learning Representations (2021). https:\/\/openreview.net\/forum?id=5lhWG3Hj2By","key":"7_CR10"},{"unstructured":"Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to scalable verification of deep networks. In: Proceedings of the Thirty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2018), Corvallis, Oregon, pp. 162\u2013171. AUAI Press (2018)","key":"7_CR11"},{"key":"7_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"269","DOI":"10.1007\/978-3-319-68167-2_19","volume-title":"Automated Technology for Verification and Analysis","author":"R Ehlers","year":"2017","unstructured":"Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D\u2019Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269\u2013286. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-68167-2_19"},{"doi-asserted-by":"crossref","unstructured":"Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming, ICFP 2002 (2002)","key":"7_CR13","DOI":"10.1145\/581478.581484"},{"unstructured":"Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.: DL2: training and querying neural networks with logic. In: International Conference on Machine Learning, pp. 1931\u20131941. PMLR (2019)","key":"7_CR14"},{"doi-asserted-by":"crossref","unstructured":"Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2: Safety and robustness certification of neural networks with abstract interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3\u201318 (2018)","key":"7_CR15","DOI":"10.1109\/SP.2018.00058"},{"key":"7_CR16","series-title":"IFIP International Federation for Information Processing","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/978-0-387-34735-6_10","volume-title":"Fourth IFIP International Conference on Theoretical Computer Science- TCS 2006","author":"W Guttmann","year":"2006","unstructured":"Guttmann, W., Maucher, M.: Variations on an ordering theme with constraints. In: Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) TCS 2006. IIFIP, vol. 209, pp. 77\u201390. Springer, Boston, MA (2006). https:\/\/doi.org\/10.1007\/978-0-387-34735-6_10"},{"doi-asserted-by":"crossref","unstructured":"Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Proceedings 16th Annual International Conference on Automated Software Engineering (ASE 2001), pp. 135\u2013143 (2001)","key":"7_CR17","DOI":"10.1109\/ASE.2001.989799"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)","key":"7_CR18","DOI":"10.1109\/CVPR.2016.90"},{"key":"7_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-319-63387-9_1","volume-title":"Computer Aided Verification","author":"X Huang","year":"2017","unstructured":"Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kun\u010dak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3\u201329. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-63387-9_1"},{"issue":"3","key":"7_CR20","doi-asserted-by":"publisher","first-page":"598","DOI":"10.2514\/1.G003724","volume":"42","author":"KD Julian","year":"2019","unstructured":"Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft collision avoidance systems. J. Guid. Control Dyn. 42(3), 598\u2013608 (2019)","journal-title":"J. Guid. Control Dyn."},{"key":"7_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1007\/978-3-319-63387-9_5","volume-title":"Computer Aided Verification","author":"G Katz","year":"2017","unstructured":"Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kun\u010dak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97\u2013117. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-63387-9_5"},{"doi-asserted-by":"crossref","unstructured":"Kling, M., Misailovic, S., Carbin, M., Rinard, M.: Bolt: on-demand infinite loop escape in unmodified binaries. In: Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA 2012, pp. 431\u2013450. Association for Computing Machinery, New York (2012)","key":"7_CR22","DOI":"10.1145\/2398857.2384648"},{"doi-asserted-by":"crossref","unstructured":"Kochenderfer, M.J., et al.: Optimized airborne collision avoidance, pp. 249\u2013276 (2015)","key":"7_CR23","DOI":"10.7551\/mitpress\/10187.003.0015"},{"unstructured":"Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report 0, University of Toronto, Toronto, Ontario (2009)","key":"7_CR24"},{"unstructured":"Leino, K., Fredrikson, M.: Relaxing local robustness. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)","key":"7_CR25"},{"unstructured":"Leino, K., Wang, Z., Fredrikson, M.: Globally-robust neural networks. In: International Conference on Machine Learning (ICML) (2021)","key":"7_CR26"},{"unstructured":"Li, Q., Haque, S., Anil, C., Lucas, J., Grosse, R.B., Jacobsen, J.H.: Preventing gradient attenuation in lipschitz constrained convolutional networks. In: Advances in Neural Information Processing Systems 32, pp. 15390\u201315402 (2019)","key":"7_CR27"},{"doi-asserted-by":"publisher","unstructured":"Li, T., Gupta, V., Mehta, M., Srikumar, V.: A logic-driven framework for consistency of neural models. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3\u20137 November 2019, pp. 3922\u20133933. Association for Computational Linguistics (2019). https:\/\/doi.org\/10.18653\/v1\/D19-1405","key":"7_CR28","DOI":"10.18653\/v1\/D19-1405"},{"unstructured":"Lin, X., Zhu, H., Samanta, R., Jagannathan, S.: ART: abstraction refinement-guided training for provably correct neural networks. In: 2020 Formal Methods in Computer Aided Design (FMCAD), pp. 148\u2013157 (2020)","key":"7_CR29"},{"doi-asserted-by":"crossref","unstructured":"Long, F., Sidiroglou-Douskos, S., Rinard, M.: Automatic runtime error repair and containment via recovery shepherding. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014, pp. 227\u2013238. Association for Computing Machinery, New York (2014)","key":"7_CR30","DOI":"10.1145\/2594291.2594337"},{"unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018). https:\/\/openreview.net\/forum?id=rJzIBfZAb","key":"7_CR31"},{"unstructured":"Meyer, B.: Eiffel: The Language (1992)","key":"7_CR32"},{"unstructured":"Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for provably robust neural networks. In: International Conference on Machine Learning, pp. 3578\u20133586. PMLR (2018)","key":"7_CR33"},{"unstructured":"M\u00fcller, C., Serre, F., Singh, G., P\u00fcschel, M., Vechev, M.: Scaling polyhedral neural network verification on GPUS. In: Proceedings of Machine Learning and Systems 3 (2021)","key":"7_CR34"},{"issue":"2","key":"7_CR35","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1006\/inco.2002.3146","volume":"178","author":"R Nieuwenhuis","year":"2002","unstructured":"Nieuwenhuis, R., Rivero, J.M.: Practical algorithms for deciding path ordering constraint satisfaction. Inf. Comput. 178(2), 422\u2013440 (2002). https:\/\/doi.org\/10.1006\/inco.2002.3146","journal-title":"Inf. Comput."},{"doi-asserted-by":"crossref","unstructured":"Perkins, J.H., et al.: Automatically patching errors in deployed software. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, pp. 87\u2013102. Association for Computing Machinery, New York (2009)","key":"7_CR36","DOI":"10.1145\/1629575.1629585"},{"doi-asserted-by":"crossref","unstructured":"Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: treating bugs as allergies\u2013a safe method to survive software failures. In: Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, SOSP 2005, pp. 235\u2013248. Association for Computing Machinery, New York (2005)","key":"7_CR37","DOI":"10.1145\/1095809.1095833"},{"unstructured":"Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., Beebee, W.S.: Enhancing server availability and security through failure-oblivious computing. In: Proceedings of the 6th Conference on Symposium on Operating Systems Design and Implementation - Volume 6, OSDI 2004, p. 21. USENIX Association, Berkeley (2004)","key":"7_CR38"},{"doi-asserted-by":"crossref","unstructured":"Singh, G., Gehr, T., P\u00fcschel, M., Vechev, M.: An abstract domain for certifying neural networks. In: Proceedings of the ACM on Programming Languages, 3(POPL), January 2019","key":"7_CR39","DOI":"10.1145\/3290354"},{"doi-asserted-by":"crossref","unstructured":"Sotoudeh, M., Thakur, A.V.: Provable repair of deep neural networks. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pp. 588\u2013603 (2021)","key":"7_CR40","DOI":"10.1145\/3453483.3454064"},{"unstructured":"Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105\u20136114. PMLR (2019)","key":"7_CR41"},{"unstructured":"Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training. arXiv preprint arXiv:2104.00298 (2021)","key":"7_CR42"},{"unstructured":"Trockman, A., Kolter, J.Z.: Orthogonalizing convolutional layers with the Cayley transform. In: International Conference on Learning Representations (2021)","key":"7_CR43"},{"doi-asserted-by":"publisher","unstructured":"Urban, C., Christakis, M., W\u00fcstholz, V., Zhang, F.: Perfectly parallel fairness certification of neural networks. In: Proceedings of the ACM on Programming Languages, 4(OOPSLA), November 2020. https:\/\/doi.org\/10.1145\/3428253","key":"7_CR44","DOI":"10.1145\/3428253"},{"unstructured":"Wu, H., et al.: Parallelization techniques for verifying neural networks. In: 2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, 21\u201324 September 2020, pp. 128\u2013137. IEEE (2020). https:\/\/doi.org\/10.34727\/2020\/isbn.978-3-85448-042-6_20","key":"7_CR45"},{"doi-asserted-by":"publisher","unstructured":"Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework for verifiable reinforcement learning. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, pp. 686\u2013701. Association for Computing Machinery, New York (2019). https:\/\/doi.org\/10.1145\/3314221.3314638","key":"7_CR46","DOI":"10.1145\/3314221.3314638"}],"container-title":["Lecture Notes in Computer Science","Software Verification and Formal Methods for ML-Enabled Autonomous Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21222-2_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T13:12:23Z","timestamp":1728565943000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21222-2_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031212215","9783031212222"],"references-count":46,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21222-2_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"16 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"FoMLAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Workshop on Formal Methods for ML-Enabled Autonomous Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Haifa","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 July 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 August 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"fomlas2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"100% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}