{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:07:32Z","timestamp":1726182452622},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031212215"},{"type":"electronic","value":"9783031212222"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21222-2_1","type":"book-chapter","created":{"date-parts":[[2022,12,15]],"date-time":"2022-12-15T09:04:55Z","timestamp":1671095095000},"page":"3-14","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["VPN: Verification of\u00a0Poisoning in\u00a0Neural Networks"],"prefix":"10.1007","author":[{"given":"Youcheng","family":"Sun","sequence":"first","affiliation":[]},{"given":"Muhammad","family":"Usman","sequence":"additional","affiliation":[]},{"given":"Divya","family":"Gopinath","sequence":"additional","affiliation":[]},{"given":"Corina S.","family":"P\u0103s\u0103reanu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,16]]},"reference":[{"key":"1_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1007\/978-3-030-76384-8_2","volume-title":"NASA Formal Methods","author":"S Bak","year":"2021","unstructured":"Bak, S.: nnenum: verification of relu neural networks with optimized abstraction refinement. In: Dutle, A., Moscato, M.M., Titolo, L., Mu\u00f1oz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 19\u201336. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-76384-8_2"},{"key":"1_CR2","unstructured":"Bak, S., Liu, C., Johnson, T.: The second international verification of neural networks competition (vnn-comp 2021): summary and results. arXiv preprint arXiv:2109.00498 (2021)"},{"key":"1_CR3","doi-asserted-by":"publisher","unstructured":"Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., \u017delezn\u00fd, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 387\u2013402. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-40994-3_25","DOI":"10.1007\/978-3-642-40994-3_25"},{"key":"1_CR4","unstructured":"Brown, T.B., Man\u00e9, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch (2017). 10.48550\/ARXIV.1712.09665. https:\/\/arxiv.org\/abs\/1712.09665"},{"key":"1_CR5","doi-asserted-by":"crossref","unstructured":"Cheng, S., Liu, Y., Ma, S., Zhang, X.: Deep feature space trojan attack of neural networks by controlled detoxification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1148\u20131156 (2021)","DOI":"10.1609\/aaai.v35i2.16201"},{"key":"1_CR6","unstructured":"Chiang, P.Y., Ni, R., Abdelkader, A., Zhu, C., Studor, C., Goldstein, T.: Certified defenses for adversarial patches. In: International Conference on Learning Representations (2019)"},{"key":"1_CR7","unstructured":"Demontis, A., et al.: Why do adversarial attacks transfer? explaining transferability of evasion and poisoning attacks. In: USENIX Security, pp. 321\u2013338 (2019)"},{"key":"1_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1007\/978-3-030-53288-8_3","volume-title":"Computer Aided Verification","author":"YY Elboher","year":"2020","unstructured":"Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 43\u201365. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-53288-8_3"},{"key":"1_CR9","doi-asserted-by":"crossref","unstructured":"Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: A defence against trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security Applications Conference, pp. 113\u2013125 (2019)","DOI":"10.1145\/3359789.3359790"},{"key":"1_CR10","doi-asserted-by":"publisher","first-page":"47230","DOI":"10.1109\/ACCESS.2019.2909068","volume":"7","author":"T Gu","year":"2019","unstructured":"Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: evaluating backdooring attacks on deep neural networks. IEEE Access 7, 47230\u201347244 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2909068","journal-title":"IEEE Access"},{"key":"1_CR11","unstructured":"Guo, W., Wang, L., Xing, X., Du, M., Song, D.: Tabor: a highly accurate approach to inspecting and restoring trojan backdoors in AI systems. arXiv preprint arXiv:1908.01763 (2019)"},{"key":"1_CR12","doi-asserted-by":"crossref","unstructured":"Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs in real-world images: the german traffic sign detection benchmark. In: International Joint Conference on Neural Networks, No. 1288 (2013)","DOI":"10.1109\/IJCNN.2013.6706807"},{"key":"1_CR13","doi-asserted-by":"crossref","unstructured":"Huang, X., et al: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2020)","DOI":"10.1016\/j.cosrev.2020.100270"},{"key":"1_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"443","DOI":"10.1007\/978-3-030-25540-4_26","volume-title":"Computer Aided Verification","author":"Guy Katz","year":"2019","unstructured":"Katz, Guy, Katz, G.: The Marabou Framework for Verification and Analysis of Deep Neural Networks. In: Dillig, Isil, Tasiran, Serdar (eds.) CAV 2019. LNCS, vol. 11561, pp. 443\u2013452. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-25540-4_26"},{"issue":"11","key":"1_CR15","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"1_CR16","doi-asserted-by":"crossref","unstructured":"Liu, Y., et al.: Trojaning attack on neural networks. In: NDSS (2018)","DOI":"10.14722\/ndss.2018.23291"},{"key":"1_CR17","unstructured":"Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning attacks. Advances in neural information processing systems 30 (2017)"},{"key":"1_CR18","unstructured":"Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does machine learning $$\\{$$FAIL$$\\}$$? generalized transferability for evasion and poisoning attacks. In: USENIX Security (2018)"},{"key":"1_CR19","doi-asserted-by":"publisher","unstructured":"Usman, M. et al.: NNrepair: constraint-based repair of neural network classifiers. Computer Aided Verification , 3\u201325 (2021). https:\/\/doi.org\/10.1007\/978-3-030-81685-8_1","DOI":"10.1007\/978-3-030-81685-8_1"},{"key":"1_CR20","doi-asserted-by":"crossref","unstructured":"Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in neural networks. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 707\u2013723. IEEE (2019)","DOI":"10.1109\/SP.2019.00031"}],"container-title":["Lecture Notes in Computer Science","Software Verification and Formal Methods for ML-Enabled Autonomous Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21222-2_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,15]],"date-time":"2022-12-15T20:08:35Z","timestamp":1671134915000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21222-2_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031212215","9783031212222"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21222-2_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"16 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"FoMLAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Workshop on Formal Methods for ML-Enabled Autonomous Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Haifa","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 July 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 August 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"fomlas2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"100% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}