{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T22:16:53Z","timestamp":1726179413738},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031209796"},{"type":"electronic","value":"9783031209802"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20980-2_40","type":"book-chapter","created":{"date-parts":[[2022,11,12]],"date-time":"2022-11-12T19:03:09Z","timestamp":1668279789000},"page":"464-476","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Self-Configuring Genetic Programming Feature Generation in\u00a0Affect Recognition Tasks"],"prefix":"10.1007","author":[{"given":"Danila","family":"Mamontov","sequence":"first","affiliation":[]},{"given":"Wolfgang","family":"Minker","sequence":"additional","affiliation":[]},{"given":"Alexey","family":"Karpov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,10]]},"reference":[{"key":"40_CR1","doi-asserted-by":"publisher","unstructured":"Cummins, N., Amiriparian, S., Ottl, S., Gerczuk, M., Schmitt, M., Schuller, B.: Multimodal bag-of-words for cross domains sentiment analysis. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. vol. 2018-April, pp. 4954\u20134958. Institute of Electrical and Electronics Engineers Inc. (sep 2018). https:\/\/doi.org\/10.1109\/ICASSP.2018.8462660","DOI":"10.1109\/ICASSP.2018.8462660"},{"key":"40_CR2","doi-asserted-by":"publisher","unstructured":"Egas L\u00f3pez, J.V., Orozco-Arroyave, J.R., Gosztolya, G.: Assessing Parkinson\u2019s disease from speech using fisher vectors. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. vol. 2019-Septe, pp. 3063\u20133067. International Speech Communication Association (2019). https:\/\/doi.org\/10.21437\/Interspeech. 2019\u20132217","DOI":"10.21437\/Interspeech"},{"key":"40_CR3","doi-asserted-by":"publisher","unstructured":"Eyben, F., W\u00f6llmer, M., Schuller, B.: OpenSMILE - The Munich versatile and fast open-source audio feature extractor. In: MM\u201910 - Proceedings of the ACM Multimedia 2010 International Conference. pp. 1459\u20131462 (2010). https:\/\/doi.org\/10.1145\/1873951.1874246","DOI":"10.1145\/1873951.1874246"},{"key":"40_CR4","doi-asserted-by":"publisher","unstructured":"van Gent, P., Farah, H., van Nes, N., van Arem, B.: Analysing noisy driver physiology real-time using off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project. Journal of Open Research Software 7(1), \u2013 (oct 2019). https:\/\/doi.org\/10.5334\/jors.241, https:\/\/doi.org\/10.5334\/jors.241","DOI":"10.5334\/jors.241"},{"key":"40_CR5","doi-asserted-by":"publisher","unstructured":"van Gent, P., Farah, H., van Nes, N., van Arem, B.: HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology and Behaviour 66, 368\u2013378 (oct 2019). https:\/\/doi.org\/10.1016\/j.trf.2019.09.015","DOI":"10.1016\/j.trf.2019.09.015"},{"key":"40_CR6","unstructured":"Glasmachers, T.: Limits of End-to-End Learning. In: Zhang, M.L., Noh, Y.K. (eds.) Proceedings of the Ninth Asian Conference on Machine Learning. Proceedings of Machine Learning Research, vol.\u00a077, pp. 17\u201332. PMLR (2017), http:\/\/proceedings.mlr.press\/v77\/glasmachers17a.html"},{"key":"40_CR7","doi-asserted-by":"crossref","unstructured":"Gosztolya, G.: Using Fisher Vector and Bag-of-Audio-Words representations to identify Styrian dialects, sleepiness, baby & orca sounds (2019)","DOI":"10.21437\/Interspeech.2019-1726"},{"key":"40_CR8","doi-asserted-by":"publisher","unstructured":"Guo, H., Jack, L.B., Nandi, A.K.: Feature generation using genetic programming with application to fault classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(1), 89\u201399 (feb 2005). https:\/\/doi.org\/10.1109\/TSMCB.2004.841426, https:\/\/ieeexplore.ieee.org\/document\/1386429","DOI":"10.1109\/TSMCB.2004.841426"},{"key":"40_CR9","doi-asserted-by":"publisher","unstructured":"Kaya, H., Karpov, A.A., Salah, A.A.: Fisher vectors with cascaded normalization for paralinguistic analysis. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. vol. 2015-Janua, pp. 909\u2013913 (2015). https:\/\/doi.org\/10.21437\/interspeech.2015-193","DOI":"10.21437\/interspeech"},{"key":"40_CR10","doi-asserted-by":"publisher","unstructured":"Khedkar, S., Gandhi, P., Shinde, G., Subramanian, V.: Deep Learning and Explainable AI in Healthcare Using EHR. pp. 129\u2013148. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-33966-1_7, https:\/\/link.springer.com\/chapter\/10.1007\/978-3-030-33966-1_7","DOI":"10.1007\/978-3-030-33966-1_7"},{"key":"40_CR11","doi-asserted-by":"publisher","unstructured":"Kirschbaum, C., Pirke, K.M., Hellhammer, D.H.: The \u2019Trier social stress test\u2019 - A tool for investigating psychobiological stress responses in a laboratory setting. In: Neuropsychobiology. vol.\u00a028, pp. 76\u201381. Karger Publishers (1993). https:\/\/doi.org\/10.1159\/000119004, https:\/\/www.karger.com\/Article\/FullText\/119004","DOI":"10.1159\/000119004"},{"key":"40_CR12","unstructured":"Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT press (1992)"},{"key":"40_CR13","doi-asserted-by":"publisher","unstructured":"Malik, M., John Camm, A., Thomas Bigger, J., Breithardt, G., Cerutti, S., Cohen, R.J., Coumel, P., Fallen, E.L., Kennedy, H.L., Kleiger, R.E., Lombardi, F., Malliani, A., Moss, A.J., Rottman, J.N., Schmidt, G., Schwartz, P.J., Singer, D.H.: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043\u20131065 (mar 1996). https:\/\/doi.org\/10.1161\/01.cir.93.5.1043, https:\/\/www.ahajournals.org\/doi\/abs\/10.1161\/01.CIR.93.5.1043","DOI":"10.1161\/01.cir.93.5.1043"},{"key":"40_CR14","doi-asserted-by":"publisher","unstructured":"Mamontov, D., Polonskaia, I., Skorokhod, A., Semenkin, E., Kessler, V., Schwenker, F.: Evolutionary Algorithms for the Design of Neural Network Classifiers for the Classification of Pain Intensity. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11377 LNAI, pp. 84\u2013100 (2019). https:\/\/doi.org\/10.1007\/978-3-030-20984-1_8, http:\/\/link.springer.com\/10.1007\/978-3-030-20984-1_8","DOI":"10.1007\/978-3-030-20984-1_8"},{"key":"40_CR15","doi-asserted-by":"publisher","unstructured":"Nikitin, N.O., Polonskaia, I.S., Vychuzhanin, P., Barabanova, I.V., Kalyuzhnaya, A.V.: Structural Evolutionary Learning for Composite Classification Models. In: Procedia Computer Science. vol. 178, pp. 414\u2013423. Elsevier B.V. (2020). https:\/\/doi.org\/10.1016\/j.procs.2020.11.043","DOI":"10.1016\/j.procs.2020.11.043"},{"key":"40_CR16","doi-asserted-by":"publisher","unstructured":"Pokorny, F.B., Graf, F., Pernkopf, F., Schuller, B.W.: Detection of negative emotions in speech signals using bags-of-audio-words. In: 2015 International Conference on Affective Computing and Intelligent Interaction, ACII 2015. pp. 879\u2013884. Institute of Electrical and Electronics Engineers Inc. (dec 2015). https:\/\/doi.org\/10.1109\/ACII.2015.7344678","DOI":"10.1109\/ACII.2015.7344678"},{"key":"40_CR17","doi-asserted-by":"publisher","unstructured":"Ringeval, F., Sonderegger, A., Sauer, J., Lalanne, D.: Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013 (2013). https:\/\/doi.org\/10.1109\/FG.2013.6553805","DOI":"10.1109\/FG.2013.6553805"},{"key":"40_CR18","doi-asserted-by":"publisher","unstructured":"Russell, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39(6), 1161\u20131178 (dec 1980). https:\/\/doi.org\/10.1037\/h0077714, \/record\/1981-25062-001","DOI":"10.1037\/h0077714"},{"key":"40_CR19","doi-asserted-by":"publisher","unstructured":"S\u00e1nchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: Theory and practice. International Journal of Computer Vision 105(3), 222\u2013245 (dec 2013). https:\/\/doi.org\/10.1007\/s11263-013-0636-x","DOI":"10.1007\/s11263-013-0636-x"},{"key":"40_CR20","doi-asserted-by":"crossref","unstructured":"Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection. In: Proceedings of the 20th ACM International Conference on Multimodal Interaction. pp. 400\u2013408. ACM, New York, NY, USA (2018), https:\/\/doi.org\/10.1145\/3242969.3242985","DOI":"10.1145\/3242969.3242985"},{"key":"40_CR21","doi-asserted-by":"publisher","unstructured":"Semenkin, E., Semenkina, M.: Self-configuring genetic programming algorithm with modified uniform crossover. In: 2012 IEEE Congress on Evolutionary Computation, CEC 2012 (2012). https:\/\/doi.org\/10.1109\/CEC.2012.6256587","DOI":"10.1109\/CEC.2012.6256587"},{"key":"40_CR22","doi-asserted-by":"publisher","unstructured":"Smith, M.G., BULL LarryBull, L.: Genetic Programming with a Genetic Algorithm for Feature Construction and Selection. Genetic Programming and Evolvable Machines 6, 265\u2013281 (2005). https:\/\/doi.org\/10.1007\/s10710-005-2988-7, http:\/\/www.ics.uci.edu\/","DOI":"10.1007\/s10710-005-2988-7"},{"issue":"1","key":"40_CR23","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s12293-015-0173-y","volume":"8","author":"B Tran","year":"2015","unstructured":"Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memetic Computing 8(1), 3\u201315 (2015). https:\/\/doi.org\/10.1007\/s12293-015-0173-y","journal-title":"Memetic Computing"},{"key":"40_CR24","doi-asserted-by":"publisher","unstructured":"Tran, B., Xue, B., Zhang, M.: Genetic programming for multiple-feature construction on high-dimensional classification. Pattern Recognition 93, 404\u2013417 (sep 2019). https:\/\/doi.org\/10.1016\/j.patcog.2019.05.006","DOI":"10.1016\/j.patcog.2019.05.006"}],"container-title":["Lecture Notes in Computer Science","Speech and Computer"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20980-2_40","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,12]],"date-time":"2022-11-12T19:07:59Z","timestamp":1668280079000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20980-2_40"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031209796","9783031209802"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20980-2_40","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"10 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SPECOM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Speech and Computer","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gurugram","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"specom2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.specom.co.in","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"99","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"60","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}