{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:04:44Z","timestamp":1726182284297},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031207129"},{"type":"electronic","value":"9783031207136"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20713-6_33","type":"book-chapter","created":{"date-parts":[[2022,12,10]],"date-time":"2022-12-10T01:08:19Z","timestamp":1670634499000},"page":"431-443","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Severity Classification of Ulcerative Colitis in Colonoscopy Videos by Learning from Confusion"],"prefix":"10.1007","author":[{"given":"Md Farhad","family":"Mokter","sequence":"first","affiliation":[]},{"given":"Azeez","family":"Idris","sequence":"additional","affiliation":[]},{"given":"JungHwan","family":"Oh","sequence":"additional","affiliation":[]},{"given":"Wallapak","family":"Tavanapong","sequence":"additional","affiliation":[]},{"given":"Piet C.","family":"de Groen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,11]]},"reference":[{"key":"33_CR1","unstructured":"U.S. National Library of Medicine. Ulcerative colitis. https:\/\/ghr.nlm.nih.gov\/condition\/ulcerative-colitis. Accessed June 2022"},{"issue":"1","key":"33_CR2","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1093\/gastro\/gox016","volume":"6","author":"T Xie","year":"2018","unstructured":"Xie, T., et al.: Ulcerative colitis endoscopic index of severity (UCEIS) versus mayo endoscopic score (MES) in guiding the need for colectomy in patients with acute severe colitis. Gastroenterol. Rep. 6(1), 38\u201344 (2018)","journal-title":"Gastroenterol. Rep."},{"issue":"12","key":"33_CR3","doi-asserted-by":"publisher","first-page":"1424","DOI":"10.1016\/j.cgh.2007.07.012","volume":"5","author":"MD Kappelman","year":"2007","unstructured":"Kappelman, M.D., Rifas-Shiman, S.L., Kleinman, K., et al.: The prevalence and geographic distribution of Crohn\u2019s disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol. 5(12), 1424\u20131429 (2007)","journal-title":"Clin. Gastroenterol. Hepatol."},{"key":"33_CR4","doi-asserted-by":"crossref","unstructured":"Rutter, M., Saunders, B., et al.: Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126(2), 451\u2013459 (2004)","DOI":"10.1053\/j.gastro.2003.11.010"},{"key":"33_CR5","doi-asserted-by":"crossref","unstructured":"Nosato, H., Sakanashi, H., Takahashi, E., Murakawa, M.: An objective evaluation method of ulcerative colitis with optical colonoscopy images based on higher order local auto-correlation features. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 89\u201392. IEEE (2014)","DOI":"10.1109\/ISBI.2014.6867816"},{"key":"33_CR6","doi-asserted-by":"crossref","unstructured":"Alammari, A., Islam, A.R., Oh, J., Tavanapong, W., Wong, J., De Groen, P. C.: Classification of ulcerative colitis severity in colonoscopy videos using CNN. In: Proceedings of the 9th International Conference on Information Management and Engineering, Barcelona, Spain, pp. 139\u2013144 (2017)","DOI":"10.1145\/3149572.3149613"},{"key":"33_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1007\/978-3-030-33723-0_3","volume-title":"Advances in Visual Computing","author":"SVLL Tejaswini","year":"2019","unstructured":"Tejaswini, S.V.L.L., Mittal, B., Oh, J., Tavanapong, W., Wong, J., de Groen, P.C.: Enhanced approach for classification of ulcerative colitis severity in colonoscopy videos using CNN. In: Bebis, G., et al. (eds.) ISVC 2019. LNCS, vol. 11845, pp. 25\u201337. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-33723-0_3"},{"key":"33_CR8","doi-asserted-by":"publisher","unstructured":"Mokter, M.F., Oh, J., Tavanapong, W., Wong, J., de Groen, P.C.: Classification of ulcerative colitis severity in colonoscopy videos using vascular pattern detection. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 552\u2013562. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59861-7_56","DOI":"10.1007\/978-3-030-59861-7_56"},{"key":"33_CR9","doi-asserted-by":"crossref","unstructured":"Takenaka, K., et al.: Development and validation of a deep neural network for accurate evaluation of endoscopic images from patients with ulcerative colitis.\u00a0Gastroenterology\u00a0158(8), 2150\u20132157 (2020)","DOI":"10.1053\/j.gastro.2020.02.012"},{"issue":"5","key":"33_CR10","doi-asserted-by":"publisher","first-page":"645","DOI":"10.1097\/MEG.0000000000001952","volume":"33","author":"HP Bhambhvani","year":"2021","unstructured":"Bhambhvani, H.P., Zamora, A.: Deep learning enabled classification of Mayo endoscopic subscore in patients with ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 33(5), 645\u2013649 (2021)","journal-title":"Eur. J. Gastroenterol. Hepatol."},{"key":"33_CR11","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2021.103443","volume":"73","author":"X Luo","year":"2022","unstructured":"Luo, X., Zhang, J., Li, Z., Yang, R.: Diagnosis of ulcerative colitis from endoscopic images based on deep learning. Biomed. Signal Process. Control 73, 103443 (2022)","journal-title":"Biomed. Signal Process. Control"},{"issue":"4","key":"33_CR12","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1080\/21681163.2021.1997644","volume":"10","author":"E Schwab","year":"2022","unstructured":"Schwab, E., et al.: Automatic estimation of ulcerative colitis severity from endoscopy videos using ordinal multi-instance learning. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 10(4), 425\u2013433 (2022)","journal-title":"Comput. Methods Biomech. Biomed. Eng. Imaging Vis."},{"key":"33_CR13","doi-asserted-by":"publisher","unstructured":"Harada, S., Bise, R., Hayashi, H., Tanaka, K., Uchida, S.: Order-guided disentangled representation learning for ulcerative colitis classification with limited labels. In: de Bruijne, M.,\u00a0et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 471\u2013480. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87196-3_44","DOI":"10.1007\/978-3-030-87196-3_44"},{"key":"33_CR14","doi-asserted-by":"crossref","unstructured":"Sutton, R.T., Zai\u034f\u0308ane, O.R., Goebel, R., Baumgart, D.C.: Artificial intelligence enabled automated diagnosis and grading of ulcerative colitis endoscopy images.\u00a0Sci. Rep.\u00a012(1), 1\u201310 (2022)","DOI":"10.1038\/s41598-022-06726-2"},{"key":"33_CR15","doi-asserted-by":"crossref","unstructured":"Borgli, H., et al.: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data\u00a07(1), 1\u201314 (2020)","DOI":"10.1038\/s41597-020-00622-y"},{"key":"33_CR16","doi-asserted-by":"publisher","first-page":"146533","DOI":"10.1109\/ACCESS.2019.2946000","volume":"7","author":"C Wang","year":"2019","unstructured":"Wang, C., et al.: Pulmonary image classification based on inception-v3 transfer learning model. IEEE Access 7, 146533\u2013146541 (2019)","journal-title":"IEEE Access"},{"key":"33_CR17","doi-asserted-by":"publisher","first-page":"423","DOI":"10.1016\/j.procs.2021.01.025","volume":"179","author":"D Sarwinda","year":"2021","unstructured":"Sarwinda, D., Paradisa, R.H., Bustamam, A., Anggia, P.: Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Comput. Sci. 179, 423\u2013431 (2021)","journal-title":"Procedia Comput. Sci."},{"key":"33_CR18","doi-asserted-by":"crossref","unstructured":"Mascarenhas, S., Agarwal, M.: A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. In: 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), vol. 1, pp. 96\u201399. IEEE, November 2021","DOI":"10.1109\/CENTCON52345.2021.9687944"},{"key":"33_CR19","doi-asserted-by":"publisher","unstructured":"Dubey, N., Bhagat, E., Rana, S., Pathak, K.: A novel approach to detect plant disease using DenseNet-121 neural network. In: Zhang, Y.D., Senjyu, T., So-In, C., Joshi, A. (eds.) Smart Trends in Computing and Communications. LNNS, vol. 396, pp. 63\u201374. Springer, Singapore (2023). https:\/\/doi.org\/10.1007\/978-981-16-9967-2_7","DOI":"10.1007\/978-981-16-9967-2_7"},{"issue":"3","key":"33_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3506695","volume":"31","author":"L Liao","year":"2022","unstructured":"Liao, L., Li, H., Shang, W., Ma, L.: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks. ACM Trans. Softw. Eng. Methodol. (TOSEM) 31(3), 1\u201340 (2022)","journal-title":"ACM Trans. Softw. Eng. Methodol. (TOSEM)"},{"key":"33_CR21","doi-asserted-by":"crossref","unstructured":"Liu, R., Krishnan, S., Elmore, A.J., Franklin, M.J.: Understanding and optimizing packed neural network training for hyper-parameter tuning. In:\u00a0Proceedings of the Fifth Workshop on Data Management for End-To-End Machine Learning, pp. 1\u201311 (2021)","DOI":"10.1145\/3462462.3468880"},{"key":"33_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2021.105111","volume":"140","author":"Z Salahuddin","year":"2022","unstructured":"Salahuddin, Z., Woodruff, H.C., Chatterjee, A., Lambin, P.: Transparency of deep neural networks for medical image analysis: a review of interpretability methods. Comput. Biol. Med. 140, 105111 (2022)","journal-title":"Comput. Biol. Med."},{"key":"33_CR23","doi-asserted-by":"crossref","unstructured":"Cheng, J., et al.: ResGANet: residual group attention network for medical image classification and segmentation.\u00a0Med. Image Anal.\u00a076, 102313 (2022)","DOI":"10.1016\/j.media.2021.102313"},{"key":"33_CR24","doi-asserted-by":"crossref","unstructured":"Xu, J., Pan, Y., Pan, X., Hoi, S., Yi, Z., Xu, Z.: RegNet: self-regulated network for image classification.\u00a0IEEE Trans. Neural Netw. Learn. Syst. (2022)","DOI":"10.1109\/TNNLS.2022.3158966"},{"key":"33_CR25","doi-asserted-by":"crossref","unstructured":"Mao, J., et al.: Pseudo-labeling generative adversarial networks for medical image classification.\u00a0Comput. Biol. Med. 147, 105729 (2022)","DOI":"10.1016\/j.compbiomed.2022.105729"}],"container-title":["Lecture Notes in Computer Science","Advances in Visual Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20713-6_33","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,10]],"date-time":"2022-12-10T01:12:48Z","timestamp":1670634768000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20713-6_33"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031207129","9783031207136"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20713-6_33","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"11 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"Tavanapong and Oh have equity interest and management roles in EndoMetric Corp. Dr. de Groen serves on the Scientific Advisory Board of EndoMetric Corp. This work is partially supported by the NIH Grant No. 1R01DK106130-01A1. Findings, opinions, and conclusions expressed in this paper do not necessarily reflect the view of the funding agency.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest and Acknowledgments"}},{"value":"ISVC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Visual Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"San Diego, CA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isvc2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.isvc.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"110","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}