{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,11]],"date-time":"2024-10-11T04:11:40Z","timestamp":1728619900390},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031207129"},{"type":"electronic","value":"9783031207136"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20713-6_13","type":"book-chapter","created":{"date-parts":[[2022,12,10]],"date-time":"2022-12-10T06:08:19Z","timestamp":1670652499000},"page":"174-183","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Open-Set Plankton Recognition Using Similarity Learning"],"prefix":"10.1007","author":[{"given":"Ola","family":"Badreldeen Bdawy Mohamed","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1352-0999","authenticated-orcid":false,"given":"Tuomas","family":"Eerola","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6290-3887","authenticated-orcid":false,"given":"Kaisa","family":"Kraft","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7691-121X","authenticated-orcid":false,"given":"Lasse","family":"Lensu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0790-6847","authenticated-orcid":false,"given":"Heikki","family":"K\u00e4lvi\u00e4inen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,11]]},"reference":[{"key":"13_CR1","doi-asserted-by":"crossref","unstructured":"Bendale, A., Boult, T.: Towards open set deep networks. In: Conference on Computer Vision and Pattern Recognition, pp. 1563\u20131572 (2016)","DOI":"10.1109\/CVPR.2016.173"},{"issue":"8","key":"13_CR2","doi-asserted-by":"publisher","first-page":"753","DOI":"10.3390\/app7080753","volume":"7","author":"G Bueno","year":"2017","unstructured":"Bueno, G., et al.: Automated diatom classification (part A): handcrafted feature approaches. Appl. Sci. 7(8), 753 (2017)","journal-title":"Appl. Sci."},{"key":"13_CR3","doi-asserted-by":"crossref","unstructured":"Bure\u0161, J., Eerola, T., Lensu, L., K\u00e4lvi\u00e4inen, H., Zem\u010d\u00edk, P.: Plankton recognition in images with varying size. In: International Conference on Pattern Recognition Workshops, pp. 110\u2013120 (2021)","DOI":"10.1007\/978-3-030-68780-9_11"},{"key":"13_CR4","doi-asserted-by":"crossref","unstructured":"Dai, J., Wang, R., Zheng, H., Ji, G., Qiao, X.: ZooplanktoNet: deep convolutional network for zooplankton classification. In: OCEANS Conference, pp. 1\u20136 (2016)","DOI":"10.1109\/OCEANSAP.2016.7485680"},{"key":"13_CR5","doi-asserted-by":"crossref","unstructured":"Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 4690\u20134699 (2019)","DOI":"10.1109\/CVPR.2019.00482"},{"issue":"5","key":"13_CR6","doi-asserted-by":"publisher","first-page":"2687","DOI":"10.1109\/TCSVT.2021.3080920","volume":"32","author":"SR Dubey","year":"2021","unstructured":"Dubey, S.R.: A decade survey of content based image retrieval using deep learning. IEEE Trans. Circuits Syst. Video Technol. 32(5), 2687\u20132704 (2021)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"13_CR7","doi-asserted-by":"crossref","unstructured":"Geng, C., Huang, S.J., Chen, S.: Recent advances in open set recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3614\u20133631 (2020)","DOI":"10.1109\/TPAMI.2020.2981604"},{"key":"13_CR8","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"issue":"22","key":"13_CR9","doi-asserted-by":"publisher","first-page":"28544","DOI":"10.1007\/s11356-021-12471-2","volume":"28","author":"DW Henrichs","year":"2021","unstructured":"Henrichs, D.W., Angl\u00e8s, S., Gaonkar, C.C., Campbell, L.: Application of a convolutional neural network to improve automated early warning of harmful algal blooms. Environ. Sci. Pollut. Res. 28(22), 28544\u201328555 (2021)","journal-title":"Environ. Sci. Pollut. Res."},{"key":"13_CR10","doi-asserted-by":"crossref","unstructured":"Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: International Workshop on Similarity-Based Pattern Recognition, pp. 84\u201392 (2015)","DOI":"10.1007\/978-3-319-24261-3_7"},{"key":"13_CR11","doi-asserted-by":"crossref","unstructured":"Kraft, K., et al.: Towards operational phytoplankton recognition with automated high-throughput imaging, near real-time data processing, and convolutional neural networks. Front. Marine Sci. 9 (2022)","DOI":"10.3389\/fmars.2022.867695"},{"key":"13_CR12","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.ecoinf.2019.02.007","volume":"51","author":"A Lumini","year":"2019","unstructured":"Lumini, A., Nanni, L.: Deep learning and transfer learning features for plankton classification. Econ. Inform. 51, 33\u201343 (2019)","journal-title":"Econ. Inform."},{"key":"13_CR13","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.marmicro.2019.01.005","volume":"147","author":"R Mitra","year":"2019","unstructured":"Mitra, R., et al.: Automated species-level identification of planktic foraminifera using convolutional neural networks, with comparison to human performance. Mar. Micropaleontol. 147, 16\u201324 (2019)","journal-title":"Mar. Micropaleontol."},{"key":"13_CR14","doi-asserted-by":"crossref","unstructured":"Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: International Conference on Computer Vision, pp. 360\u2013368 (2017)","DOI":"10.1109\/ICCV.2017.47"},{"key":"13_CR15","doi-asserted-by":"crossref","unstructured":"Nepovinnykh, E., Eerola, T., Kalviainen, H.: Siamese network based pelage pattern matching for ringed seal re-identification. In: Winter Conference on Applications of Computer Vision Workshops, pp. 25\u201334 (2020)","DOI":"10.1109\/WACVW50321.2020.9096935"},{"issue":"4","key":"13_CR16","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1007\/s11265-020-01567-6","volume":"93","author":"X Ni","year":"2021","unstructured":"Ni, X., Huttunen, H.: Vehicle attribute recognition by appearance: computer vision methods for vehicle type, make and model classification. J. Sig. Process. Syst. 93(4), 357\u2013368 (2021)","journal-title":"J. Sig. Process. Syst."},{"issue":"6","key":"13_CR17","doi-asserted-by":"publisher","first-page":"195","DOI":"10.4319\/lom.2007.5.195","volume":"5","author":"R Olson","year":"2007","unstructured":"Olson, R., Sosik, H.: A submersible imaging-in-flow instrument to analyze nano-and microplankton: imaging flowcytobot. Limnol. Oceanogr. Methods 5(6), 195\u2013203 (2007)","journal-title":"Limnol. Oceanogr. Methods"},{"key":"13_CR18","doi-asserted-by":"crossref","unstructured":"Orenstein, E., Beijbom, O.: Transfer learning and deep feature extraction for planktonic image data sets. In: Winter Conference on Applications of Computer Vision, pp. 1082\u20131088 (2017)","DOI":"10.1109\/WACV.2017.125"},{"key":"13_CR19","doi-asserted-by":"crossref","unstructured":"Pu, Y., Feng, Z., Wang, Z., Yang, Z., Li, J.: Anomaly detection for in situ marine plankton images. In: International Conference on Computer Vision, pp. 3661\u20133671 (2021)","DOI":"10.1109\/ICCVW54120.2021.00409"},{"issue":"7","key":"13_CR20","doi-asserted-by":"publisher","first-page":"1655","DOI":"10.1109\/TPAMI.2018.2846566","volume":"41","author":"F Radenovi\u0107","year":"2018","unstructured":"Radenovi\u0107, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655\u20131668 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"13_CR21","doi-asserted-by":"crossref","unstructured":"Teigen, A.L., Saad, A., Stahl, A.: Leveraging similarity metrics to in-situ discover planktonic interspecies variations or mutations. In: Global Oceans 2020: Singapore-US Gulf Coast, pp. 1\u20138 (2020)","DOI":"10.1109\/IEEECONF38699.2020.9388998"},{"key":"13_CR22","doi-asserted-by":"crossref","unstructured":"Walker, J., Orenstein, E.: Improving rare-class recognition of marine plankton with hard negative mining. In: International Conference on Computer Vision, pp. 3672\u20133682 (2021)","DOI":"10.1109\/ICCVW54120.2021.00410"},{"issue":"6","key":"13_CR23","doi-asserted-by":"publisher","first-page":"2872","DOI":"10.1109\/TPAMI.2021.3054775","volume":"44","author":"M Ye","year":"2021","unstructured":"Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 2872\u20132893 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Lecture Notes in Computer Science","Advances in Visual Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20713-6_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T04:56:38Z","timestamp":1728536198000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20713-6_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031207129","9783031207136"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20713-6_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"11 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISVC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Visual Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"San Diego, CA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isvc2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.isvc.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"110","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}