{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T22:49:06Z","timestamp":1743029346291,"version":"3.40.3"},"publisher-location":"Cham","reference-count":18,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031202322"},{"type":"electronic","value":"9783031202339"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20233-9_3","type":"book-chapter","created":{"date-parts":[[2022,11,3]],"date-time":"2022-11-03T00:02:48Z","timestamp":1667433768000},"page":"22-31","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Novel Multi-layered Minutiae Extractor Based on\u00a0OCT Fingerprints"],"prefix":"10.1007","author":[{"given":"Wenfeng","family":"Zeng","sequence":"first","affiliation":[]},{"given":"Wentian","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xu","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Qin","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,3]]},"reference":[{"issue":"3","key":"3_CR1","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1111\/j.1365-2818.2012.03619.x","volume":"247","author":"AG Podoleanu","year":"2012","unstructured":"Podoleanu, A.G.: Optical coherence tomography. J. Microsc. 247(3), 209\u2013219 (2012)","journal-title":"J. Microsc."},{"key":"3_CR2","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1016\/j.neucom.2020.03.102","volume":"402","author":"F Liu","year":"2020","unstructured":"Liu, F., Liu, G., Zhao, Q., Shen, L.: Robust and high-security fingerprint recognition system using optical coherence tomography. Neurocomputing 402, 14\u201328 (2020)","journal-title":"Neurocomputing"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Tang, Y., Gao, F., Feng, J., Liu, Y.: FingerNet: an unified deep network for fingerprint minutiae extraction. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 108\u2013116. IEEE, October 2017","DOI":"10.1109\/BTAS.2017.8272688"},{"key":"3_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107273","volume":"103","author":"B Zhou","year":"2020","unstructured":"Zhou, B., Han, C., Liu, Y., Guo, T., Qin, J.: Fast minutiae extractor using neural network. Pattern Recogn. 103, 107273 (2020)","journal-title":"Pattern Recogn."},{"key":"3_CR5","doi-asserted-by":"crossref","unstructured":"Jiang, L., Zhao, T., Bai, C., Yong, A., Wu, M.: A direct fingerprint minutiae extraction approach based on convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 571\u2013578. IEEE, July 2016","DOI":"10.1109\/IJCNN.2016.7727251"},{"key":"3_CR6","doi-asserted-by":"crossref","unstructured":"Tang, Y., Gao, F., Feng, J.: Latent fingerprint minutia extraction using fully convolutional network. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 117\u2013123. IEEE, October 2017","DOI":"10.1109\/BTAS.2017.8272689"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Nguyen, D.L., Cao, K., Jain, A.K.: Robust minutiae extractor: integrating deep networks and fingerprint domain knowledge. In: 2018 International Conference on Biometrics (ICB), pp. 9\u201316. IEEE, February 2018","DOI":"10.1109\/ICB2018.2018.00013"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Sankaran, A., Pandey, P., Vatsa, M., Singh, R. (2014, September). On latent fingerprint minutiae extraction using stacked denoising sparse autoencoders. In IEEE International Joint Conference on Biometrics (pp. 1\u20137). IEEE","DOI":"10.1109\/BTAS.2014.6996300"},{"issue":"4","key":"3_CR9","doi-asserted-by":"publisher","first-page":"1270","DOI":"10.1016\/j.patcog.2006.09.008","volume":"40","author":"F Zhao","year":"2007","unstructured":"Zhao, F., Tang, X.: Preprocessing and postprocessing for skeleton-based fingerprint minutiae extraction. Pattern Recogn. 40(4), 1270\u20131281 (2007)","journal-title":"Pattern Recogn."},{"key":"3_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/11569947_10","volume-title":"Advances in Biometric Person Authentication","author":"H Fronthaler","year":"2005","unstructured":"Fronthaler, H., Kollreider, K., Bigun, J.: Local feature extraction in fingerprints by complex filtering. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 77\u201384. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11569947_10"},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"Darlow, L.N., Rosman, B.: Fingerprint minutiae extraction using deep learning. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 22\u201330. IEEE, October 2017","DOI":"10.1109\/BTAS.2017.8272678"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"3_CR14","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440\u20131448 (2015)","DOI":"10.1109\/ICCV.2015.169"},{"issue":"9","key":"3_CR16","doi-asserted-by":"publisher","first-page":"6518","DOI":"10.1109\/TIM.2020.2967513","volume":"69","author":"F Liu","year":"2020","unstructured":"Liu, F., Shen, C., Liu, H., Liu, G., Liu, Y., Guo, Z., Wang, L.: A flexible touch-based fingerprint acquisition device and a benchmark database using optical coherence tomography. IEEE Trans. Instrum. Meas. 69(9), 6518\u20136529 (2020)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"3_CR17","unstructured":"Ko, K.: User\u2019s guide to nist biometric image software (nbis) (2007)"},{"key":"3_CR18","unstructured":"Neuro Technology. https:\/\/www.neurotechnology.com\/verifinger.html"}],"container-title":["Lecture Notes in Computer Science","Biometric Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20233-9_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,7]],"date-time":"2024-10-07T03:58:55Z","timestamp":1728273535000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20233-9_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031202322","9783031202339"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20233-9_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"3 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CCBR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Biometric Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccbr2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ccbr99.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"115","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"70","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}