{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:46:55Z","timestamp":1726184815001},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031201011"},{"type":"electronic","value":"9783031201028"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-20102-8_11","type":"book-chapter","created":{"date-parts":[[2023,1,12]],"date-time":"2023-01-12T15:04:11Z","timestamp":1673535851000},"page":"133-147","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Robot Foreign Object Inspection Algorithm for Transmission Line Based on Improved YOLOv5"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0767-6965","authenticated-orcid":false,"given":"Zhenzhou","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0680-7433","authenticated-orcid":false,"given":"Xiaoyue","family":"Xie","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5415-7861","authenticated-orcid":false,"given":"Xiang","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4126-1111","authenticated-orcid":false,"given":"Yijin","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5769-6307","authenticated-orcid":false,"given":"Lifang","family":"Ma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6973-3366","authenticated-orcid":false,"given":"Pingping","family":"Yu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,13]]},"reference":[{"key":"11_CR1","doi-asserted-by":"crossref","unstructured":"Tan, P., Li, X.F., Xu, J.M., Ma, J.E., Wang, F.J., Ding, J., et al.: Catenary insulator defect detection based on contour features and gray similarity matching. J. Zhejiang Univ. \u2013 Sci. A: Appl. Phys. Eng. 21(1), 64\u201373 (2020)","DOI":"10.1631\/jzus.A1900341"},{"key":"11_CR2","unstructured":"Jalil, B., Moroni, D., Pascali, M., Salvetti, O.: Multimodal image analysis for power line inspection. In: International Conference on Pattern Recognition and Artificial Intelligence, Beijing, pp. 13\u201317 (2018)"},{"key":"11_CR3","doi-asserted-by":"publisher","first-page":"724","DOI":"10.1016\/j.crfs.2021.10.003","volume":"4","author":"F Jubayer","year":"2021","unstructured":"Jubayer, F., et al.: Detection of mold on the food surface using YOLOv5. Curr. Res. Food Sci. 4, 724\u2013728 (2021)","journal-title":"Curr. Res. Food Sci."},{"issue":"9","key":"11_CR4","doi-asserted-by":"publisher","first-page":"1619","DOI":"10.3390\/rs13091619","volume":"13","author":"B Yan","year":"2021","unstructured":"Yan, B., Fan, P., Lei, X.Y., Liu, Z.J., Yang, F.Z.: A real-time apple targets detection method for picking robot based on improved YOLOv5. Remote Sens. 13(9), 1619 (2021)","journal-title":"Remote Sens."},{"issue":"13","key":"11_CR5","doi-asserted-by":"publisher","first-page":"3014","DOI":"10.3390\/s19133014","volume":"19","author":"B Jalil","year":"2019","unstructured":"Jalil, B., Leone, G.R., Martinelli, M., Moroni, D., Berton, A.: Fault detection in power equipment via an unmanned aerial system using multi modal data. Sensors 19(13), 3014 (2019)","journal-title":"Sensors"},{"issue":"4","key":"11_CR6","doi-asserted-by":"publisher","first-page":"1486","DOI":"10.1109\/TSMC.2018.2871750","volume":"5","author":"X Tao","year":"2020","unstructured":"Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., Xu, D.: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. Trans. Syst. Man Cybern.: Syst. 5(4), 1486\u20131498 (2020)","journal-title":"Trans. Syst. Man Cybern.: Syst."},{"key":"11_CR7","doi-asserted-by":"crossref","unstructured":"Wang, Y., Wang, J., Gao, F., Hu, P., Li, J.: Detection and recognition for fault insulator based on deep learning. In: 2018 11th International Congress on Image and Signal Processing. Bio Medical Engineering and Informatics, Beijing, pp. 1\u20136 (2018)","DOI":"10.1109\/CISP-BMEI.2018.8633245"},{"issue":"16","key":"11_CR8","doi-asserted-by":"publisher","first-page":"3095","DOI":"10.3390\/rs13163095","volume":"13","author":"JQ Zhao","year":"2021","unstructured":"Zhao, J.Q., Zhang, X.H., Yan, J.W., Qiu, X.L., Yao, X., Tian, Y.C., et al.: A wheat spike detection method in UAV images based on improved YOLOv5. Remote Sens. 13(16), 3095 (2021)","journal-title":"Remote Sens."},{"key":"11_CR9","doi-asserted-by":"publisher","first-page":"110524","DOI":"10.1016\/j.commatsci.2021.110524","volume":"196","author":"R Perera","year":"2021","unstructured":"Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Comput. Mater. Sci. 196, 110524 (2021)","journal-title":"Comput. Mater. Sci."},{"key":"11_CR10","first-page":"1","volume":"153","author":"PN Chowdhury","year":"2021","unstructured":"Chowdhury, P.N., Shivakumara, P., Nandanwar, L., Samiron, F., Pal, U., Lu, T.: Oil palm tree counting in drone images. J. Pre-proof 153, 1\u20139 (2021)","journal-title":"J. Pre-proof"},{"issue":"1","key":"11_CR11","doi-asserted-by":"publisher","first-page":"012010","DOI":"10.1088\/1742-6596\/1978\/1\/012010","volume":"1978","author":"ZX Ning","year":"2021","unstructured":"Ning, Z.X., Wu, X.J., Yang, J., Yang, Y.Q.: MT-YOLOv5: mobile terminal table detection model based on YOLOv5. Conf. Ser. 1978(1), 012010 (2021)","journal-title":"Conf. Ser."},{"key":"11_CR12","doi-asserted-by":"publisher","first-page":"61797","DOI":"10.1109\/ACCESS.2019.2915985","volume":"7","author":"H Jiang","year":"2019","unstructured":"Jiang, H., Qiu, X.J., Chen, J., Liu, X., Zhuang, S.: Insulator fault detection in aerial images based on ensemble learning with multi-level perception. IEEE Access 7, 61797\u201361810 (2019)","journal-title":"IEEE Access"},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Wang, J.H., Xiao, T., Gu, Q.Y., Chen, Q.: YOLOv5_CSL_F: YOLOv5\u2019s loss improvement and attention mechanism application for remote sensing image object detection. In: 2021 International Conference on Wireless Communications and Smart Grid, pp. 197\u2013203 (2021)","DOI":"10.1109\/ICWCSG53609.2021.00045"},{"issue":"14","key":"11_CR14","doi-asserted-by":"publisher","first-page":"4365","DOI":"10.3390\/en14144365","volume":"14","author":"JJ Liu","year":"2021","unstructured":"Liu, J.J., Liu, C.Y., Wu, Y.Q., Xu, H.J., Sun, Z.: An improved method based on deep learning for insulator fault detection in diverse aerial images. Energies 14(14), 4365 (2021)","journal-title":"Energies"},{"key":"11_CR15","doi-asserted-by":"crossref","unstructured":"Han, K., Wang, Y.H., Tian, Q., Guo, J., Xu, C.: Ghost net: more features from cheap operations. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Washington, pp. 1580\u20131589 (2020)","DOI":"10.1109\/CVPR42600.2020.00165"},{"issue":"12","key":"11_CR16","doi-asserted-by":"publisher","first-page":"1587","DOI":"10.3390\/e23121587","volume":"23","author":"MF Zha","year":"2021","unstructured":"Zha, M.F., Qian, W.B., Yi, W.L., Hua, J.: A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion. Entropy 23(12), 1587 (2021)","journal-title":"Entropy"},{"key":"11_CR17","unstructured":"Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. IEICE Transactions on Fundamentals of Electronics. Communications and Computer Sciences (2019)"},{"key":"11_CR18","doi-asserted-by":"crossref","unstructured":"Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Yeh, I.H.: CSP net: a new backbone that can enhance learning capability of CNN. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, Washington, pp. 390\u2013391 (2020)","DOI":"10.1109\/CVPRW50498.2020.00203"},{"issue":"9","key":"11_CR19","doi-asserted-by":"publisher","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","volume":"379","author":"KM He","year":"2014","unstructured":"He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 379(9), 1904\u20131920 (2014)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"11_CR20","doi-asserted-by":"crossref","unstructured":"Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Utah, pp. 8759\u20138761 (2018)","DOI":"10.1109\/CVPR.2018.00913"},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Tang, J.L., Liu, S.B., Zheng, B., Zhang, J., Wang, B., Yang, M.K.: Smoking behavior detection based on improved YOLOv5s algorithm. In: The 9th IEEE International Symposium on Next-Generation Electronics, Changsha, pp. 1\u20134 (2021)","DOI":"10.1109\/ISNE48910.2021.9493637"},{"key":"11_CR22","doi-asserted-by":"crossref","unstructured":"Rezatofighi, H., Gwak, N., Gwak, J.Y., Sadeghian, A., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, California, pp. 658\u2013666 (2019)","DOI":"10.1109\/CVPR.2019.00075"},{"key":"11_CR23","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, pp. 779\u2013788 (2016)","DOI":"10.1109\/CVPR.2016.91"},{"issue":"7","key":"11_CR24","doi-asserted-by":"publisher","first-page":"211","DOI":"10.3390\/universe7070211","volume":"7","author":"XZ Wang","year":"2021","unstructured":"Wang, X.Z., Wei, J.Y., Liu, Y., Li, J.H., Zhang, Z., Chen, J.Y., et al.: Research on morphological detection of FR I and FR II radio galaxies based on improved YOLOv5. Universe 7(7), 211 (2021)","journal-title":"Universe"}],"container-title":["Lecture Notes in Computer Science","Machine Learning for Cyber Security"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20102-8_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,12]],"date-time":"2023-01-12T15:28:42Z","timestamp":1673537322000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20102-8_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031201011","9783031201028"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20102-8_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"13 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ML4CS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Learning for Cyber Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 December 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 December 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ml4cs2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/nsclab.org\/ml4cs2022\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}