{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T00:16:41Z","timestamp":1743034601184,"version":"3.40.3"},"publisher-location":"Cham","reference-count":66,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200793"},{"type":"electronic","value":"9783031200809"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20080-9_10","type":"book-chapter","created":{"date-parts":[[2022,11,2]],"date-time":"2022-11-02T19:59:12Z","timestamp":1667419152000},"page":"158-175","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Improving the\u00a0Intra-class Long-Tail in\u00a03D Detection via\u00a0Rare Example Mining"],"prefix":"10.1007","author":[{"given":"Chiyu Max","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Mahyar","family":"Najibi","sequence":"additional","affiliation":[]},{"given":"Charles R.","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Yin","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Dragomir","family":"Anguelov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,3]]},"reference":[{"key":"10_CR1","doi-asserted-by":"crossref","unstructured":"Abdelkarim, S., Achlioptas, P., Huang, J., Li, B., Church, K., Elhoseiny, M.: Long-tail visual relationship recognition with a visiolinguistic hubless loss (2020)","DOI":"10.1109\/ICCV48922.2021.01562"},{"key":"10_CR2","doi-asserted-by":"crossref","unstructured":"Beluch, W.H., Genewein, T., N\u00fcrnberger, A., K\u00f6hler, J.M.: The power of ensembles for active learning in image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9368\u20139377 (2018)","DOI":"10.1109\/CVPR.2018.00976"},{"key":"10_CR3","doi-asserted-by":"crossref","unstructured":"Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621\u201311631 (2020)","DOI":"10.1109\/CVPR42600.2020.01164"},{"key":"10_CR4","unstructured":"Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. arXiv preprint. arXiv:1806.07366 (2018)"},{"key":"10_CR5","unstructured":"Choi, H., Jang, E., Alemi, A.A.: Waic, but why? generative ensembles for robust anomaly detection. arXiv preprint. arXiv:1810.01392 (2018)"},{"key":"10_CR6","doi-asserted-by":"crossref","unstructured":"Choi, J., Elezi, I., Lee, H.J., Farabet, C., Alvarez, J.M.: Active learning for deep object detection via probabilistic modeling. arXiv preprint. arXiv:2103.16130 (2021)","DOI":"10.1109\/ICCV48922.2021.01010"},{"key":"10_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1007\/978-3-030-58526-6_41","volume-title":"Computer Vision \u2013 ECCV 2020","author":"P Chu","year":"2020","unstructured":"Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 694\u2013710. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58526-6_41"},{"key":"10_CR8","doi-asserted-by":"crossref","unstructured":"Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268\u20139277 (2019)","DOI":"10.1109\/CVPR.2019.00949"},{"key":"10_CR9","doi-asserted-by":"crossref","unstructured":"Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"10_CR10","unstructured":"Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components estimation. arXiv preprint. arXiv:1410.8516 (2014)"},{"key":"10_CR11","unstructured":"Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. arXiv preprint. arXiv:1605.08803 (2016)"},{"key":"10_CR12","doi-asserted-by":"crossref","unstructured":"Dong, Q., Gong, S., Zhu, X.: Class rectification hard mining for imbalanced deep learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1851\u20131860 (2017)","DOI":"10.1109\/ICCV.2017.205"},{"key":"10_CR13","doi-asserted-by":"crossref","unstructured":"Elezi, I., Yu, Z., Anandkumar, A., Leal-Taixe, L., Alvarez, J.M.: Not all labels are equal: Rationalizing the labeling costs for training object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 14492\u201314501 (2022)","DOI":"10.1109\/CVPR52688.2022.01409"},{"key":"10_CR14","unstructured":"Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183\u20131192. PMLR (2017)"},{"issue":"11","key":"10_CR15","doi-asserted-by":"publisher","first-page":"1231","DOI":"10.1177\/0278364913491297","volume":"32","author":"A Geiger","year":"2013","unstructured":"Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Rob. Res. 32(11), 1231\u20131237 (2013)","journal-title":"Int. J. Rob. Res."},{"key":"10_CR16","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580\u2013587 (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"10_CR17","unstructured":"Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord: free-form continuous dynamics for scalable reversible generative models. In: ICLR (2018)"},{"key":"10_CR18","doi-asserted-by":"crossref","unstructured":"Gudovskiy, D., Hodgkinson, A., Yamaguchi, T., Tsukizawa, S.: Deep active learning for biased datasets via fisher kernel self-supervision. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9041\u20139049 (2020)","DOI":"10.1109\/CVPR42600.2020.00906"},{"key":"10_CR19","unstructured":"Guo, Y.: Active instance sampling via matrix partition. In: NIPS, pp. 802\u2013810 (2010)"},{"key":"10_CR20","doi-asserted-by":"crossref","unstructured":"Gupta, A., Dollar, P., Girshick, R.: Lvis: A dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356\u20135364 (2019)","DOI":"10.1109\/CVPR.2019.00550"},{"key":"10_CR21","doi-asserted-by":"crossref","unstructured":"Harakeh, A., Smart, M., Waslander, S.L.: Bayesod: A bayesian approach for uncertainty estimation in deep object detectors. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 87\u201393. IEEE (2020)","DOI":"10.1109\/ICRA40945.2020.9196544"},{"key":"10_CR22","doi-asserted-by":"crossref","unstructured":"Holub, A., Perona, P., Burl, M.C.: Entropy-based active learning for object recognition. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1\u20138. IEEE (2008)","DOI":"10.1109\/CVPRW.2008.4563068"},{"key":"10_CR23","doi-asserted-by":"crossref","unstructured":"Hsieh, T.I., Robb, E., Chen, H.T., Huang, J.B.: Droploss for long-tail instance segmentation. arXiv preprint. arXiv:2104.06402 (2021)","DOI":"10.1609\/aaai.v35i2.16246"},{"key":"10_CR24","doi-asserted-by":"crossref","unstructured":"Jamal, M.A., Brown, M., Yang, M.H., Wang, L., Gong, B.: Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7610\u20137619 (2020)","DOI":"10.1109\/CVPR42600.2020.00763"},{"key":"10_CR25","doi-asserted-by":"crossref","unstructured":"Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372\u20132379. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206627"},{"key":"10_CR26","unstructured":"Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint. arXiv:1910.09217 (2019)"},{"key":"10_CR27","doi-asserted-by":"crossref","unstructured":"Kim, J., Jeong, J., Shin, J.: M2m: imbalanced classification via major-to-minor translation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 13896\u201313905 (2020)","DOI":"10.1109\/CVPR42600.2020.01391"},{"key":"10_CR28","unstructured":"Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. arXiv preprint. arXiv:1807.03039 (2018)"},{"key":"10_CR29","unstructured":"Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect out-of-distribution data. In: NIPS (2020)"},{"key":"10_CR30","doi-asserted-by":"crossref","unstructured":"Kobyzev, I., Prince, S., Brubaker, M.: Normalizing flows: an introduction and review of current methods. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)","DOI":"10.1109\/TPAMI.2020.2992934"},{"key":"10_CR31","doi-asserted-by":"crossref","unstructured":"Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697\u201312705 (2019)","DOI":"10.1109\/CVPR.2019.01298"},{"key":"10_CR32","doi-asserted-by":"crossref","unstructured":"Li, T., Wang, L., Wu, G.: Self supervision to distillation for long-tailed visual recognition. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 630\u2013639 (2021)","DOI":"10.1109\/ICCV48922.2021.00067"},{"key":"10_CR33","doi-asserted-by":"crossref","unstructured":"Li, Y., et al.: Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10991\u201311000 (2020)","DOI":"10.1109\/CVPR42600.2020.01100"},{"key":"10_CR34","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"10_CR35","doi-asserted-by":"crossref","unstructured":"Liu, B., Li, H., Kang, H., Hua, G., Vasconcelos, N.: Gistnet: a geometric structure transfer network for long-tailed recognition. arXiv preprint. arXiv:2105.00131 (2021)","DOI":"10.1109\/ICCV48922.2021.00810"},{"key":"10_CR36","doi-asserted-by":"crossref","unstructured":"Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537\u20132546 (2019)","DOI":"10.1109\/CVPR.2019.00264"},{"key":"10_CR37","doi-asserted-by":"crossref","unstructured":"Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: Lasernet: an efficient probabilistic 3d object detector for autonomous driving. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12677\u201312686 (2019)","DOI":"10.1109\/CVPR.2019.01296"},{"key":"10_CR38","unstructured":"Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep generative models know what they don\u2019t know? In: International Conference on Learning Representations (2018). https:\/\/openreview.net\/forum?id=H1xwNhCcYm"},{"key":"10_CR39","doi-asserted-by":"crossref","unstructured":"Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the twenty-first international conference on Machine learning, p. 79 (2004)","DOI":"10.1145\/1015330.1015349"},{"key":"10_CR40","doi-asserted-by":"crossref","unstructured":"Qi, C.R., et al.: Offboard 3d object detection from point cloud sequences. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6134\u20136144 (2021)","DOI":"10.1109\/CVPR46437.2021.00607"},{"key":"10_CR41","doi-asserted-by":"crossref","unstructured":"Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Zhang, H.J.: Two-dimensional active learning for image classification. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20138. IEEE (2008)","DOI":"10.1109\/CVPR.2008.4587383"},{"key":"10_CR42","unstructured":"Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530\u20131538. PMLR (2015)"},{"key":"10_CR43","unstructured":"Segal, S., et al.: Just label what you need: fine-grained active selection for perception and prediction through partially labeled scenes. arXiv preprint arXiv:2104.03956 (2021)"},{"key":"10_CR44","unstructured":"Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach (2017)"},{"key":"10_CR45","unstructured":"Settles, B.: Active learning literature survey (2009)"},{"key":"10_CR46","doi-asserted-by":"crossref","unstructured":"Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761\u2013769 (2016)","DOI":"10.1109\/CVPR.2016.89"},{"key":"10_CR47","doi-asserted-by":"crossref","unstructured":"Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 5972\u20135981 (2019)","DOI":"10.1109\/ICCV.2019.00607"},{"key":"10_CR48","doi-asserted-by":"crossref","unstructured":"Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446\u20132454 (2020)","DOI":"10.1109\/CVPR42600.2020.00252"},{"key":"10_CR49","doi-asserted-by":"crossref","unstructured":"Sun, P., et al.: Rsn: range sparse net for efficient, accurate lidar 3d object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5725\u20135734 (2021)","DOI":"10.1109\/CVPR46437.2021.00567"},{"key":"10_CR50","doi-asserted-by":"crossref","unstructured":"Tan, J., Lu, X., Zhang, G., Yin, C., Li, Q.: Equalization loss v2: a new gradient balance approach for long-tailed object detection. arXiv preprint. arXiv:2012.08548 (2020)","DOI":"10.1109\/CVPR46437.2021.00173"},{"key":"10_CR51","doi-asserted-by":"crossref","unstructured":"Tan, J., et al.: Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11662\u201311671 (2020)","DOI":"10.1109\/CVPR42600.2020.01168"},{"key":"10_CR52","doi-asserted-by":"crossref","unstructured":"Wang, J., et al.: Seesaw loss for long-tailed instance segmentation. arXiv preprint. arXiv:2008.10032 (2020)","DOI":"10.1109\/CVPR46437.2021.00957"},{"key":"10_CR53","unstructured":"Wang, T., et al.: Classification calibration for long-tail instance segmentation. arXiv preprint. arXiv:1910.13081 (2019)"},{"key":"10_CR54","unstructured":"Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.X.: Long-tailed recognition by routing diverse distribution-aware experts. In: International Conference on Learning Representations (2021). https:\/\/openreview.net\/forum?id=D9I3drBz4UC"},{"key":"10_CR55","unstructured":"Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 7032\u20137042 (2017)"},{"key":"10_CR56","doi-asserted-by":"crossref","unstructured":"Wu, J., Song, L., Wang, T., Zhang, Q., Yuan, J.: Forest r-cnn: large-vocabulary long-tailed object detection and instance segmentation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1570\u20131578 (2020)","DOI":"10.1145\/3394171.3413970"},{"key":"10_CR57","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1007\/978-3-030-58558-7_15","volume-title":"Computer Vision \u2013 ECCV 2020","author":"L Xiang","year":"2020","unstructured":"Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247\u2013263. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58558-7_15"},{"key":"10_CR58","unstructured":"Yang, B., Bai, M., Liang, M., Zeng, W., Urtasun, R.: Auto4d: learning to label 4d objects from sequential point clouds. arXiv preprint. arXiv:2101.06586 (2021)"},{"key":"10_CR59","doi-asserted-by":"crossref","unstructured":"Zang, Y., Huang, C., Loy, C.C.: Fasa: Feature augmentation and sampling adaptation for long-tailed instance segmentation. arXiv preprint. arXiv:2102.12867 (2021)","DOI":"10.1109\/ICCV48922.2021.00344"},{"key":"10_CR60","doi-asserted-by":"crossref","unstructured":"Zhang, C. et al.: A simple and effective use of object-centric images for long-tailed object detection. arXiv e-prints, pp. arXiv-2102 (2021)","DOI":"10.1109\/ICCV48922.2021.00047"},{"key":"10_CR61","unstructured":"Zhang, L., Goldstein, M., Ranganath, R.: Understanding failures in out-of-distribution detection with deep generative models. In: International Conference on Machine Learning, pp. 12427\u201312436. PMLR (2021)"},{"key":"10_CR62","unstructured":"Zhao, Y., et al.: Improving long-tailed classification from instance level. arXiv preprint. arXiv:2104.06094 (2021)"},{"key":"10_CR63","doi-asserted-by":"crossref","unstructured":"Zheng, Y., Pal, D.K., Savvides, M.: Ring loss: convex feature normalization for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5089\u20135097 (2018)","DOI":"10.1109\/CVPR.2018.00534"},{"key":"10_CR64","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. arXiv preprint. arXiv:2104.00466 (2021)","DOI":"10.1109\/CVPR46437.2021.01622"},{"key":"10_CR65","unstructured":"Zhou, Y., et al.: End-to-end multi-view fusion for 3d object detection in lidar point clouds. In: Conference on Robot Learning, pp. 923\u2013932. PMLR (2020)"},{"key":"10_CR66","doi-asserted-by":"crossref","unstructured":"Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of object subcategories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 915\u2013922 (2014)","DOI":"10.1109\/CVPR.2014.122"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20080-9_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,7]],"date-time":"2024-10-07T03:31:49Z","timestamp":1728271909000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20080-9_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200793","9783031200809"],"references-count":66,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20080-9_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"3 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}