{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T22:13:11Z","timestamp":1726179191269},"publisher-location":"Cham","reference-count":61,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200762"},{"type":"electronic","value":"9783031200779"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20077-9_38","type":"book-chapter","created":{"date-parts":[[2022,11,5]],"date-time":"2022-11-05T16:21:52Z","timestamp":1667665312000},"page":"646-663","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Multi-domain Multi-definition Landmark Localization for\u00a0Small Datasets"],"prefix":"10.1007","author":[{"given":"David","family":"Ferman","sequence":"first","affiliation":[]},{"given":"Gaurav","family":"Bharaj","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,6]]},"reference":[{"key":"38_CR1","unstructured":"Bao, H., Dong, L., Wei, F.: Beit: Bert pre-training of image transformers. ArXiv abs\/2106.08254 (2021)"},{"key":"38_CR2","doi-asserted-by":"publisher","unstructured":"Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Machine Learning, pp. 151\u2013175 (2009). https:\/\/doi.org\/10.1007\/s10994-009-5152-4","DOI":"10.1007\/s10994-009-5152-4"},{"key":"38_CR3","unstructured":"Bulat, A., Sanchez, E., Tzimiropoulos, G.: Subpixel heatmap regression for facial landmark localization. In: Proceedings of the British Machine Vision Conference (BMVC) (2021)"},{"key":"38_CR4","doi-asserted-by":"crossref","unstructured":"Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2d & 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1021\u20131030 (2017)","DOI":"10.1109\/ICCV.2017.116"},{"key":"38_CR5","doi-asserted-by":"crossref","unstructured":"Burgos-Artizzu, X.P., Perona, P., Doll\u00e1r, P.: Robust face landmark estimation under occlusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1513\u20131520 (2013)","DOI":"10.1109\/ICCV.2013.191"},{"key":"38_CR6","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1007\/s11263-013-0667-3","volume":"107","author":"X Cao","year":"2012","unstructured":"Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vis. 107, 177\u2013190 (2012)","journal-title":"Int. J. Comput. Vis."},{"key":"38_CR7","doi-asserted-by":"crossref","unstructured":"Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European Conference on Computer Vision. pp. 213\u2013229. Springer (2020)","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"38_CR8","doi-asserted-by":"crossref","unstructured":"Chandran, P., Bradley, D., Gross, M.H., Beeler, T.: Attention-driven cropping for very high resolution facial landmark detection. 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5860\u20135869 (2020)","DOI":"10.1109\/CVPR42600.2020.00590"},{"key":"38_CR9","doi-asserted-by":"crossref","unstructured":"Dapogny, A., Bailly, K., Cord, M.: Decafa: deep convolutional cascade for face alignment in the wild. 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 6892\u20136900 (2019)","DOI":"10.1109\/ICCV.2019.00699"},{"key":"38_CR10","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.N.: Bert: Pre-training of deep bidirectional transformers for language understanding (2018). arxiv.org\/abs\/1810.04805"},{"key":"38_CR11","doi-asserted-by":"crossref","unstructured":"Dong, X., Yu, S.I., Weng, X., Wei, S.E., Yang, Y., Sheikh, Y.: Supervision-by-registration: an unsupervised approach to improve the precision of facial landmark detectors. 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 360\u2013368 (2018)","DOI":"10.1109\/CVPR.2018.00045"},{"key":"38_CR12","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"38_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"769","DOI":"10.1007\/978-3-030-58607-2_45","volume-title":"Computer Vision \u2013 ECCV 2020","author":"N Dvornik","year":"2020","unstructured":"Dvornik, N., Schmid, C., Mairal, J.: Selecting relevant features from a multi-domain representation for few-shot classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 769\u2013786. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58607-2_45"},{"key":"38_CR14","doi-asserted-by":"crossref","unstructured":"Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235\u20132245 (2018)","DOI":"10.1109\/CVPR.2018.00238"},{"key":"38_CR15","unstructured":"Hoffman, J., Tzeng, E., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4068\u20134076 (2015)"},{"key":"38_CR16","doi-asserted-by":"crossref","unstructured":"Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., Kautz, J.: Improving landmark localization with semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1546\u20131555 (2018)","DOI":"10.1109\/CVPR.2018.00167"},{"key":"38_CR17","doi-asserted-by":"crossref","unstructured":"Huang, Y., Yang, H., Li, C., Kim, J., Wei, F.: Adnet: Leveraging error-bias towards normal direction in face alignment. arXiv preprint arXiv:2109.05721 (2021)","DOI":"10.1109\/ICCV48922.2021.00307"},{"issue":"12","key":"38_CR18","doi-asserted-by":"publisher","first-page":"3174","DOI":"10.1007\/s11263-021-01521-4","volume":"129","author":"H Jin","year":"2021","unstructured":"Jin, H., Liao, S., Shao, L.: Pixel-in-pixel net: towards efficient facial landmark detection in the wild. Int. J. Comput. Vision 129(12), 3174\u20133194 (2021)","journal-title":"Int. J. Comput. Vision"},{"key":"38_CR19","unstructured":"Jin, S., Feng, Z., Yang, W., Kittler, J.: Separable batch normalization for robust facial landmark localization with cross-protocol network training. arXiv preprint arXiv:2101.06663 (2021)"},{"key":"38_CR20","unstructured":"Jin, S., Feng, Z., Yang, W., Kittler, J.: Separable batch normalization for robust facial landmark localization with cross-protocol network training. ArXiv abs\/2101.06663 (2021)"},{"key":"38_CR21","unstructured":"Joshi, M., Dredze, M., Cohen, W.W., Ros\u00e9, C.P.: Multi-domain learning: When do domains matter? In: EMNLP (2012)"},{"key":"38_CR22","doi-asserted-by":"crossref","unstructured":"Khan, M.H., et al.: Animalweb: a large-scale hierarchical dataset of annotated animal faces. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6937\u20136946 (2020)","DOI":"10.1109\/CVPR42600.2020.00697"},{"key":"38_CR23","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"38_CR24","doi-asserted-by":"crossref","unstructured":"Kowalski, M., Naruniec, J., Trzci\u0144ski, T.: Deep alignment network: a convolutional neural network for robust face alignment. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2034\u20132043 (2017)","DOI":"10.1109\/CVPRW.2017.254"},{"key":"38_CR25","doi-asserted-by":"crossref","unstructured":"Kumar, A., et al.: Luvli face alignment: estimating landmarks\u2019 location, uncertainty, and visibility likelihood. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8236\u20138246 (2020)","DOI":"10.1109\/CVPR42600.2020.00826"},{"key":"38_CR26","unstructured":"Lan, X., Hu, Q., Cheng, J.: Hih: Towards more accurate face alignment via heatmap in heatmap. arXiv preprint arXiv:2104.03100 (2021)"},{"key":"38_CR27","unstructured":"Liu, R., Lehman, J., Molino, P., Such, F.P., Frank, E., Sergeev, A., Yosinski, J.: An intriguing failing of convolutional neural networks and the coordconv solution. In: NeurIPS (2018)"},{"key":"38_CR28","unstructured":"Liu, Y., Shi, H., Si, Y., Shen, H., Wang, X., Mei, T.: A high-efficiency framework for constructing large-scale face parsing benchmark. arXiv preprint arXiv:1905.04830 (2019)"},{"key":"38_CR29","doi-asserted-by":"crossref","unstructured":", Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision pp. 10012\u201310022 (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"38_CR30","doi-asserted-by":"crossref","unstructured":"Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4293\u20134302 (2016)","DOI":"10.1109\/CVPR.2016.465"},{"key":"38_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1007\/978-3-319-46484-8_29","volume-title":"Computer Vision \u2013 ECCV 2016","author":"A Newell","year":"2016","unstructured":"Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483\u2013499. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_29"},{"key":"38_CR32","unstructured":"Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks. ArXiv abs\/1801.07372 (2018)"},{"key":"38_CR33","doi-asserted-by":"crossref","unstructured":"Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Readings in Computer Vision, pp. 638\u2013643 (1987)","DOI":"10.1016\/B978-0-08-051581-6.50061-1"},{"key":"38_CR34","doi-asserted-by":"crossref","unstructured":"Qian, S., Sun, K., Wu, W., Qian, C., Jia, J.: Aggregation via separation: boosting facial landmark detector with semi-supervised style translation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 10153\u201310163 (2019)","DOI":"10.1109\/ICCV.2019.01025"},{"key":"38_CR35","unstructured":"Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019)"},{"key":"38_CR36","doi-asserted-by":"crossref","unstructured":"Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: The first facial landmark localization challenge. In: Proceedings of the IEEE international conference on computer vision workshops. pp. 397\u2013403 (2013)","DOI":"10.1109\/ICCVW.2013.59"},{"key":"38_CR37","doi-asserted-by":"crossref","unstructured":"Saragih, J.M., Lucey, S., Cohn, J.F.: Face alignment through subspace constrained mean-shifts. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1034\u20131041. IEEE (2009)","DOI":"10.1109\/ICCV.2009.5459377"},{"key":"38_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1007\/978-3-319-10599-4_6","volume-title":"Computer Vision \u2013 ECCV 2014","author":"BM Smith","year":"2014","unstructured":"Smith, B.M., Zhang, L.: Collaborative facial landmark localization for transferring annotations across datasets. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 78\u201393. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10599-4_6"},{"key":"38_CR39","doi-asserted-by":"crossref","unstructured":"Song, L., Wu, W., Fu, C., Qian, C., Loy, C.C., He, R.: Everything\u2019s talkin\u2019: Pareidolia face reenactment. arXiv preprint arXiv:2104.03061 (2021)","DOI":"10.1109\/CVPR46437.2021.00227"},{"key":"38_CR40","unstructured":"Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)"},{"key":"38_CR41","doi-asserted-by":"publisher","first-page":"2038","DOI":"10.1109\/TPAMI.2019.2907634","volume":"42","author":"Z Tang","year":"2020","unstructured":"Tang, Z., Peng, X., Li, K., Metaxas, D.N.: Towards efficient u-nets: a coupled and quantized approach. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2038\u20132050 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"38_CR42","unstructured":"Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., J\u00e9gou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347\u201310357. PMLR (2021)"},{"key":"38_CR43","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"609","DOI":"10.1007\/978-3-030-01264-9_36","volume-title":"Computer Vision \u2013 ECCV 2018","author":"R Valle","year":"2018","unstructured":"Valle, R., Buenaposada, J.M., Vald\u00e9s, A., Baumela, L.: A deeply-initialized coarse-to-fine ensemble of regression trees for face alignment. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision \u2013 ECCV 2018. LNCS, vol. 11218, pp. 609\u2013624. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01264-9_36"},{"key":"38_CR44","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998\u20136008 (2017)"},{"key":"38_CR45","doi-asserted-by":"crossref","unstructured":"Wang, X., Bo, L., Fuxin, L.: Adaptive wing loss for robust face alignment via heatmap regression. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 6971\u20136981 (2019)","DOI":"10.1109\/ICCV.2019.00707"},{"key":"38_CR46","doi-asserted-by":"crossref","unstructured":"Wardle, S.G., Paranjape, S., Taubert, J., Baker, C.I.: Illusory faces are more likely to be perceived as male than female. Proceedings of the National Academy of Sciences 119(5) (2022)","DOI":"10.1073\/pnas.2117413119"},{"key":"38_CR47","doi-asserted-by":"crossref","unstructured":"Watchareeruetai, U., et al.: Lotr: face landmark localization using localization transformer. arXiv preprint arXiv:2109.10057 (2021)","DOI":"10.1109\/ACCESS.2022.3149380"},{"key":"38_CR48","doi-asserted-by":"crossref","unstructured":"Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 4724\u20134732 (2016)","DOI":"10.1109\/CVPR.2016.511"},{"key":"38_CR49","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3306346.3323030","volume":"38","author":"SE Wei","year":"2019","unstructured":"Wei, S.E., Saragih, J.M., Simon, T., Harley, A.W., Lombardi, S., Perdoch, M., Hypes, A., Wang, D., Badino, H., Sheikh, Y.: Vr facial animation via multiview image translation. ACM Trans. Graph. (TOG) 38, 1\u201316 (2019)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"38_CR50","unstructured":"White, T.: Shared visual abstractions. ArXiv abs\/1912.04217 (2019)"},{"key":"38_CR51","unstructured":"Williams, J.: Multi-domain learning and generalization in dialog state tracking. In: SIGDIAL Conference (2013)"},{"key":"38_CR52","doi-asserted-by":"crossref","unstructured":"Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00227"},{"key":"38_CR53","doi-asserted-by":"crossref","unstructured":"Wu, W., Yang, S.: Leveraging intra and inter-dataset variations for robust face alignment. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 2096\u20132105 (2017)","DOI":"10.1109\/CVPRW.2017.261"},{"key":"38_CR54","doi-asserted-by":"crossref","unstructured":"Xiong, X., la Torre, F.D.: Supervised descent method and its applications to face alignment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 532\u2013539 (2013)","DOI":"10.1109\/CVPR.2013.75"},{"key":"38_CR55","doi-asserted-by":"crossref","unstructured":"Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark localisation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 79\u201387 (2017)","DOI":"10.1109\/CVPRW.2017.253"},{"key":"38_CR56","doi-asserted-by":"crossref","unstructured":"Yaniv, J., Newman, Y.: The face of art: landmark detection and geometric style in portraits (2019)","DOI":"10.1145\/3306346.3322984"},{"key":"38_CR57","doi-asserted-by":"crossref","unstructured":"Zhang, J., Kan, M., Shan, S., Chen, X.: Leveraging datasets with varying annotations for face alignment via deep regression network. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3801\u20133809 (2015)","DOI":"10.1109\/ICCV.2015.433"},{"key":"38_CR58","doi-asserted-by":"publisher","DOI":"10.1016\/j.gmod.2021.101103","volume":"115","author":"J Zhang","year":"2021","unstructured":"Zhang, J., Cai, H., Guo, Y., Peng, Z.: Landmark detection and 3d face reconstruction for caricature using a nonlinear parametric model. Graph. Model. 115, 101103 (2021)","journal-title":"Graph. Model."},{"key":"38_CR59","doi-asserted-by":"crossref","unstructured":"Zheng, Y., et al.: General facial representation learning in a visual-linguistic manner. CoRR (2021)","DOI":"10.1109\/CVPR52688.2022.01814"},{"key":"38_CR60","unstructured":"Zhu, S., Li, C., Loy, C.C., Tang, X.: Transferring landmark annotations for cross-dataset face alignment. ArXiv abs\/1409.0602 (2014)"},{"key":"38_CR61","unstructured":"Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment by coarse-to-fine shape searching. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4998\u20135006 (2015)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20077-9_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T00:23:26Z","timestamp":1667867006000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20077-9_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200762","9783031200779"],"references-count":61,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20077-9_38","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"6 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}