{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T06:14:37Z","timestamp":1744179277975,"version":"3.40.3"},"publisher-location":"Cham","reference-count":50,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200731"},{"type":"electronic","value":"9783031200748"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20074-8_8","type":"book-chapter","created":{"date-parts":[[2022,11,11]],"date-time":"2022-11-11T20:23:11Z","timestamp":1668198191000},"page":"128-145","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":35,"title":["PartImageNet: A Large, High-Quality Dataset of\u00a0Parts"],"prefix":"10.1007","author":[{"given":"Ju","family":"He","sequence":"first","affiliation":[]},{"given":"Shuo","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Shaokang","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Adam","family":"Kortylewski","sequence":"additional","affiliation":[]},{"given":"Xiaoding","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Jie-Neng","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Qihang","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Alan","family":"Yuille","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,12]]},"reference":[{"issue":"2","key":"8_CR1","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1037\/0033-295X.94.2.115","volume":"94","author":"I Biederman","year":"1987","unstructured":"Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)","journal-title":"Psychol. Rev."},{"key":"8_CR2","unstructured":"Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)"},{"key":"8_CR3","unstructured":"Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801\u2013818 (2018)","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"8_CR5","doi-asserted-by":"crossref","unstructured":"Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: Detecting and representing objects using holistic models and body parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1971\u20131978 (2014)","DOI":"10.1109\/CVPR.2014.254"},{"key":"8_CR6","unstructured":"Chen, X., Yuille, A.L.: Articulated pose estimation by a graphical model with image dependent pairwise relations. Adv. Neural Inf. Process. Syst. 27 (2014)"},{"key":"8_CR7","doi-asserted-by":"crossref","unstructured":"Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: exploring simple meta-learning for few-shot learning. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 9062\u20139071 (2021)","DOI":"10.1109\/ICCV48922.2021.00893"},{"key":"8_CR8","doi-asserted-by":"crossref","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213\u20133223 (2016)","DOI":"10.1109\/CVPR.2016.350"},{"key":"8_CR9","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. Ieee (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"issue":"4","key":"8_CR10","doi-asserted-by":"publisher","first-page":"594","DOI":"10.1109\/TPAMI.2006.79","volume":"28","author":"L Fei-Fei","year":"2006","unstructured":"Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594\u2013611 (2006)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"8_CR11","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1023\/B:VISI.0000042934.15159.49","volume":"61","author":"PF Felzenszwalb","year":"2005","unstructured":"Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vision 61(1), 55\u201379 (2005)","journal-title":"Int. J. Comput. Vision"},{"key":"8_CR12","unstructured":"Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126\u20131135. PMLR (2017)"},{"issue":"1","key":"8_CR13","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/T-C.1973.223602","volume":"100","author":"MA Fischler","year":"1973","unstructured":"Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Trans. Comput. 100(1), 67\u201392 (1973)","journal-title":"IEEE Trans. Comput."},{"key":"8_CR14","doi-asserted-by":"crossref","unstructured":"de Geus, D., Meletis, P., Lu, C., Wen, X., Dubbelman, G.: Part-aware panoptic segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5485\u20135494 (2021)","DOI":"10.1109\/CVPR46437.2021.00544"},{"key":"8_CR15","first-page":"442","volume":"24","author":"R Girshick","year":"2011","unstructured":"Girshick, R., Felzenszwalb, P., McAllester, D.: Object detection with grammar models. Adv. Neural Inf. Process. Syst. 24, 442\u2013450 (2011)","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Gong, K., Liang, X., Li, Y., Chen, Y., Yang, M., Lin, L.: Instance-level human parsing via part grouping network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 770\u2013785 (2018)","DOI":"10.1007\/978-3-030-01225-0_47"},{"key":"8_CR17","unstructured":"He, J., et al.: Transfg: a transformer architecture for fine-grained recognition. arXiv preprint arXiv:2103.07976 (2021)"},{"key":"8_CR18","unstructured":"He, J., Kortylewski, A., Yuille, A.: Compas: representation learning with compositional part sharing for few-shot classification. arXiv preprint arXiv:2101.11878 (2021)"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Kirillov, A., Girshick, R., He, K., Doll\u00e1r, P.: Panoptic feature pyramid networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6399\u20136408 (2019)","DOI":"10.1109\/CVPR.2019.00656"},{"key":"8_CR20","doi-asserted-by":"publisher","unstructured":"Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332\u20131338 (2015). https:\/\/doi.org\/10.1126\/science.aab3050, https:\/\/www.science.org\/doi\/abs\/10.1126\/science.aab3050","DOI":"10.1126\/science.aab3050"},{"issue":"4","key":"8_CR21","doi-asserted-by":"publisher","first-page":"871","DOI":"10.1109\/TPAMI.2018.2820063","volume":"41","author":"X Liang","year":"2018","unstructured":"Liang, X., Gong, K., Shen, X., Lin, L.: Look into person: joint body parsing & pose estimation network and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 871\u2013885 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"8_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll\u00e1r, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"8_CR23","unstructured":"Liu, Q., et al.: Cgpart: a part segmentation dataset based on 3D computer graphics models. arXiv preprint arXiv:2103.14098 (2021)"},{"key":"8_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1007\/978-3-030-58545-7_9","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Liu","year":"2020","unstructured":"Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 142\u2013158. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58545-7_9"},{"key":"8_CR25","doi-asserted-by":"crossref","unstructured":"Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disentangling of object shape and appearance. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.01121"},{"key":"8_CR26","doi-asserted-by":"crossref","unstructured":"Mo, K., et al.: Partnet: a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 909\u2013918 (2019)","DOI":"10.1109\/CVPR.2019.00100"},{"key":"8_CR27","doi-asserted-by":"crossref","unstructured":"Reddy, N.D., Vo, M., Narasimhan, S.G.: Carfusion: combining point tracking and part detection for dynamic 3D reconstruction of vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1906\u20131915 (2018)","DOI":"10.1109\/CVPR.2018.00204"},{"key":"8_CR28","unstructured":"Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018)"},{"key":"8_CR29","doi-asserted-by":"crossref","unstructured":"Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 8430\u20138439 (2019)","DOI":"10.1109\/ICCV.2019.00852"},{"key":"8_CR30","unstructured":"Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175 (2017)"},{"key":"8_CR31","doi-asserted-by":"crossref","unstructured":"Song, X., et al.: Apollocar3d: a large 3D car instance understanding benchmark for autonomous driving. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5452\u20135462 (2019)","DOI":"10.1109\/CVPR.2019.00560"},{"key":"8_CR32","doi-asserted-by":"crossref","unstructured":"Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 480\u2013496 (2018)","DOI":"10.1007\/978-3-030-01225-0_30"},{"key":"8_CR33","doi-asserted-by":"crossref","unstructured":"Thewlis, J., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks by factorized spatial embeddings. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5916\u20135925 (2017)","DOI":"10.1109\/ICCV.2017.348"},{"key":"8_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1007\/978-3-030-58568-6_16","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Tian","year":"2020","unstructured":"Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266\u2013282. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58568-6_16"},{"key":"8_CR35","unstructured":"Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology (2011)"},{"key":"8_CR36","unstructured":"Wang, J., Zhang, Z., Xie, C., Premachandran, V., Yuille, A.: Unsupervised learning of object semantic parts from internal states of cnns by population encoding. arXiv preprint arXiv:1511.06855 (2015)"},{"key":"8_CR37","doi-asserted-by":"crossref","unstructured":"Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Joint object and part segmentation using deep learned potentials. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1573\u20131581 (2015)","DOI":"10.1109\/ICCV.2015.184"},{"key":"8_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1007\/3-540-45054-8_2","volume-title":"Computer Vision - ECCV 2000","author":"M Weber","year":"2000","unstructured":"Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18\u201332. Springer, Heidelberg (2000). https:\/\/doi.org\/10.1007\/3-540-45054-8_2"},{"key":"8_CR39","doi-asserted-by":"crossref","unstructured":"Wu, J., Zhang, T., Zhang, Y., Wu, F.: Task-aware part mining network for few-shot learning. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 8433\u20138442 (2021)","DOI":"10.1109\/ICCV48922.2021.00832"},{"key":"8_CR40","doi-asserted-by":"crossref","unstructured":"Xia, F., Wang, P., Chen, X., Yuille, A.L.: Joint multi-person pose estimation and semantic part segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6769\u20136778 (2017)","DOI":"10.1109\/CVPR.2017.644"},{"key":"8_CR41","doi-asserted-by":"crossref","unstructured":"Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3D object detection in the wild. In: IEEE Winter Conference on Applications of Computer Vision, pp. 75\u201382. IEEE (2014)","DOI":"10.1109\/WACV.2014.6836101"},{"key":"8_CR42","unstructured":"Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. arXiv preprint arXiv:2105.15203 (2021)"},{"key":"8_CR43","unstructured":"Xu, W., Wang, H., Tu, Z., et al.: Attentional constellation nets for few-shot learning. In: International Conference on Learning Representations (2020)"},{"issue":"6","key":"8_CR44","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2980179.2980238","volume":"35","author":"L Yi","year":"2016","unstructured":"Yi, L., et al.: A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graph. (ToG) 35(6), 1\u201312 (2016)","journal-title":"ACM Trans. Graph. (ToG)"},{"issue":"2","key":"8_CR45","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/BF00127169","volume":"8","author":"AL Yuille","year":"1992","unstructured":"Yuille, A.L., Hallinan, P.W., Cohen, D.S.: Feature extraction from faces using deformable templates. Int. J. Comput. Vision 8(2), 99\u2013111 (1992)","journal-title":"Int. J. Comput. Vision"},{"key":"8_CR46","unstructured":"Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: differentiable earth mover\u2019s distance for few-shot learning (2020)"},{"key":"8_CR47","doi-asserted-by":"crossref","unstructured":"Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: few-shot image classification with differentiable earth mover\u2019s distance and structured classifiers. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12203\u201312213 (2020)","DOI":"10.1109\/CVPR42600.2020.01222"},{"key":"8_CR48","doi-asserted-by":"crossref","unstructured":"Zhao, J., Li, J., Cheng, Y., Sim, T., Yan, S., Feng, J.: Understanding humans in crowded scenes: Deep nested adversarial learning and a new benchmark for multi-human parsing. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 792\u2013800 (2018)","DOI":"10.1145\/3240508.3240509"},{"key":"8_CR49","doi-asserted-by":"crossref","unstructured":"Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633\u2013641 (2017)","DOI":"10.1109\/CVPR.2017.544"},{"key":"8_CR50","doi-asserted-by":"crossref","unstructured":"Zhu, S.C., Mumford, D.: A Stochastic Grammar of Images. Now Publishers Inc. (2007)","DOI":"10.1561\/9781601980618"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20074-8_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,11]],"date-time":"2022-11-11T20:24:13Z","timestamp":1668198253000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20074-8_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200731","9783031200748"],"references-count":50,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20074-8_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"12 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}