{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:58:50Z","timestamp":1742914730634,"version":"3.40.3"},"publisher-location":"Cham","reference-count":64,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200700"},{"type":"electronic","value":"9783031200717"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20071-7_41","type":"book-chapter","created":{"date-parts":[[2022,11,12]],"date-time":"2022-11-12T05:15:09Z","timestamp":1668230109000},"page":"705-722","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Unitail: Detecting, Reading, and\u00a0Matching in\u00a0Retail Scene"],"prefix":"10.1007","author":[{"given":"Fangyi","family":"Chen","sequence":"first","affiliation":[]},{"given":"Han","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zaiwang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jiachen","family":"Dou","sequence":"additional","affiliation":[]},{"given":"Shentong","family":"Mo","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yongxin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Uzair","family":"Ahmed","sequence":"additional","affiliation":[]},{"given":"Chenchen","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Marios","family":"Savvides","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,13]]},"reference":[{"key":"41_CR1","unstructured":"Bai, Y., Chen, Y., Yu, W., Wang, L., Zhang, W.: Products-10K: a large-scale product recognition dataset. CoRR abs\/2008.10545 (2020). https:\/\/arxiv.org\/abs\/2008.10545"},{"key":"41_CR2","doi-asserted-by":"crossref","unstructured":"Cai, Y., Wen, L., Zhang, L., Du, D., Wang, W.: Rethinking object detection in retail stores. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 947\u2013954 (2021)","DOI":"10.1609\/aaai.v35i2.16178"},{"key":"41_CR3","unstructured":"Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. CoRR abs\/2005.12872 (2020). https:\/\/arxiv.org\/abs\/2005.12872"},{"key":"41_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2020.103050","volume":"200","author":"F Chen","year":"2020","unstructured":"Chen, F., Zhu, C., Shen, Z., Zhang, H., Savvides, M.: NCMS: towards accurate anchor free object detection through l2 norm calibration and multi-feature selection. Comput. Vis. Image Underst. 200, 103050 (2020)","journal-title":"Comput. Vis. Image Underst."},{"key":"41_CR5","unstructured":"Cheng, L., et al.: Weakly supervised learning with side information for noisy labeled images. CoRR abs\/2008.11586 (2020). https:\/\/arxiv.org\/abs\/2008.11586"},{"key":"41_CR6","unstructured":"Chng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. CoRR abs\/1710.10400 (2017). http:\/\/arxiv.org\/abs\/1710.10400"},{"key":"41_CR7","unstructured":"Collins, J., et al.: ABO: dataset and benchmarks for real-world 3D object understanding. CoRR abs\/2110.06199 (2021). https:\/\/arxiv.org\/abs\/2110.06199"},{"key":"41_CR8","unstructured":"Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs\/1810.04805 (2018). http:\/\/arxiv.org\/abs\/1810.04805"},{"key":"41_CR9","unstructured":"Ding, J., et al.: Object detection in aerial images: a large-scale benchmark and challenges (2021)"},{"key":"41_CR10","unstructured":"Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: object detection with keypoint triplets. arXiv preprint arXiv:1904.08189 (2019)"},{"issue":"2","key":"41_CR11","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303\u2013338 (2010). https:\/\/doi.org\/10.1007\/s11263-009-0275-4","journal-title":"Int. J. Comput. Vis."},{"key":"41_CR12","doi-asserted-by":"crossref","unstructured":"Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition (2021)","DOI":"10.1109\/CVPR46437.2021.00702"},{"key":"41_CR13","doi-asserted-by":"crossref","unstructured":"Follmann, P., B\u00f6ttger, T., H\u00e4rtinger, P., K\u00f6nig, R., Ulrich, M.: MVTec D2S: densely segmented supermarket dataset. CoRR abs\/1804.08292 (2018). http:\/\/arxiv.org\/abs\/1804.08292","DOI":"10.1007\/978-3-030-01249-6_35"},{"key":"41_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"440","DOI":"10.1007\/978-3-319-10605-2_29","volume-title":"Computer Vision \u2013 ECCV 2014","author":"M George","year":"2014","unstructured":"George, M., Floerkemeier, C.: Recognizing products: a per-exemplar multi-label image classification approach. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 440\u2013455. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10605-2_29"},{"key":"41_CR15","doi-asserted-by":"publisher","unstructured":"George, M., Mircic, D., S\u00f6r\u00f6s, G., Floerkemeier, C., Mattern, F.: Fine-grained product class recognition for assisted shopping (2015). https:\/\/doi.org\/10.48550\/arxiv.1510.04074. https:\/\/arxiv.org\/abs\/1510.04074","DOI":"10.48550\/arxiv.1510.04074"},{"key":"41_CR16","doi-asserted-by":"publisher","unstructured":"Georgiadis, K., et al.: Products-6K: a large-scale groceries product recognition dataset. In: The 14th PErvasive Technologies Related to Assistive Environments Conference, PETRA 2021, pp. 1\u20137. Association for Computing Machinery, New York (2021). https:\/\/doi.org\/10.1145\/3453892.3453894","DOI":"10.1145\/3453892.3453894"},{"key":"41_CR17","doi-asserted-by":"crossref","unstructured":"Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., Hassner, T.: Precise detection in densely packed scenes. In: Proceedings of Conference on Computer Vision Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.00537"},{"key":"41_CR18","doi-asserted-by":"crossref","unstructured":"Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.254"},{"key":"41_CR19","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"41_CR20","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"41_CR21","unstructured":"Huang, L., Yang, Y., Deng, Y., Yu, Y.: DenseBox: unifying landmark localization with end to end object detection. arXiv preprint arXiv:1509.04874 (2015)"},{"key":"41_CR22","unstructured":"Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. In: Workshop on Deep Learning, NIPS (2014)"},{"key":"41_CR23","unstructured":"Jund, P., Abdo, N., Eitel, A., Burgard, W.: The Freiburg groceries dataset. CoRR abs\/1611.05799 (2016). http:\/\/arxiv.org\/abs\/1611.05799"},{"key":"41_CR24","doi-asserted-by":"publisher","unstructured":"Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), ICDAR 2015, pp. 1156\u20131160. IEEE Computer Society, New York (2015). https:\/\/doi.org\/10.1109\/ICDAR.2015.7333942","DOI":"10.1109\/ICDAR.2015.7333942"},{"key":"41_CR25","doi-asserted-by":"publisher","unstructured":"Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1484\u20131493 (2013). https:\/\/doi.org\/10.1109\/ICDAR.2013.221","DOI":"10.1109\/ICDAR.2013.221"},{"key":"41_CR26","doi-asserted-by":"crossref","unstructured":"Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: FoveaBox: beyond anchor-based object detector. arXiv preprint arXiv:1904.03797 (2019)","DOI":"10.1109\/TIP.2020.3002345"},{"key":"41_CR27","unstructured":"Koubaroulis, D., Matas, J., Kittler, J.: Evaluating colour-based object recognition algorithms using the SOIL-47 database. In: in Asian Conference on Computer Vision, pp. 840\u2013845 (2002)"},{"key":"41_CR28","doi-asserted-by":"publisher","unstructured":"Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1\u20132), 83\u201397 (1955). https:\/\/doi.org\/10.1002\/nav.3800020109. https:\/\/onlinelibrary.wiley.com\/doi\/abs\/10.1002\/nav.3800020109","DOI":"10.1002\/nav.3800020109"},{"key":"41_CR29","doi-asserted-by":"crossref","unstructured":"Lee, J., Park, S., Baek, J., Oh, S.J., Kim, S., Lee, H.: On recognizing texts of arbitrary shapes with 2D self-attention. CoRR abs\/1910.04396 (2019). http:\/\/arxiv.org\/abs\/1910.04396","DOI":"10.1109\/CVPRW50498.2020.00281"},{"key":"41_CR30","doi-asserted-by":"crossref","unstructured":"Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8610\u20138617 (2019)","DOI":"10.1609\/aaai.v33i01.33018610"},{"key":"41_CR31","doi-asserted-by":"crossref","unstructured":"Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with differentiable binarization. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11474\u201311481 (2020)","DOI":"10.1609\/aaai.v34i07.6812"},{"key":"41_CR32","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"41_CR33","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"41_CR34","unstructured":"Liu, Y., Jin, L., Zhang, S., Zhang, S.: Detecting curve text in the wild: new dataset and new solution. CoRR abs\/1712.02170 (2017). http:\/\/arxiv.org\/abs\/1712.02170"},{"key":"41_CR35","doi-asserted-by":"publisher","unstructured":"Merler, M., Galleguillos, C., Belongie, S.: Recognizing groceries in situ using in vitro training data. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20138 (2007). https:\/\/doi.org\/10.1109\/CVPR.2007.383486","DOI":"10.1109\/CVPR.2007.383486"},{"key":"41_CR36","doi-asserted-by":"publisher","unstructured":"Ming, Q., Miao, L., Zhou, Z., Yang, X., Dong, Y.: Optimization for arbitrary-oriented object detection via representation invariance loss. IEEE Geosci. Remote Sens. Lett., 1\u20135 (2021). https:\/\/doi.org\/10.1109\/LGRS.2021.3115110","DOI":"10.1109\/LGRS.2021.3115110"},{"key":"41_CR37","doi-asserted-by":"publisher","unstructured":"Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: BMVC - British Machine Vision Conference. BMVA, Surrey, UK, September 2012. https:\/\/doi.org\/10.5244\/C.26.127. https:\/\/hal.inria.fr\/hal-00818183","DOI":"10.5244\/C.26.127"},{"key":"41_CR38","doi-asserted-by":"publisher","unstructured":"Oucheikh, R., Pettersson, T., L\u00f6fstr\u00f6m, T.: Product verification using OCR classification and Mondrian conformal prediction. Expert Syste. Appl. 188, 115942 (2022). https:\/\/doi.org\/10.1016\/j.eswa.2021.115942. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0957417421012963","DOI":"10.1016\/j.eswa.2021.115942"},{"key":"41_CR39","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1007\/978-3-030-01225-0_29","volume-title":"Computer Vision \u2013 ECCV 2018","author":"X Pan","year":"2018","unstructured":"Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via IBN-Net. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 484\u2013500. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01225-0_29"},{"key":"41_CR40","doi-asserted-by":"crossref","unstructured":"Pan, X., et al.: Dynamic refinement network for oriented and densely packed object detection, pp. 1\u20138 (2020)","DOI":"10.1109\/CVPR42600.2020.01122"},{"key":"41_CR41","unstructured":"Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A.: Image transformer. CoRR abs\/1802.05751 (2018). http:\/\/arxiv.org\/abs\/1802.05751"},{"key":"41_CR42","doi-asserted-by":"crossref","unstructured":"Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, pp. 2458\u20132466, May 2021. https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/view\/16347","DOI":"10.1609\/aaai.v35i3.16347"},{"key":"41_CR43","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)"},{"key":"41_CR44","doi-asserted-by":"publisher","unstructured":"Risnumawan, A., Shivakumara, P., Chan, C.S., Tan, C.L.: A robust arbitrary text detection system for natural scene images. Expert Syst. Appl. 41(18), 8027\u20138048 (2014). https:\/\/doi.org\/10.1016\/j.eswa.2014.07.008. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0957417414004060","DOI":"10.1016\/j.eswa.2014.07.008"},{"key":"41_CR45","doi-asserted-by":"publisher","unstructured":"Rocha, A., Hauagge, D.C., Wainer, J., Goldenstein, S.: Automatic fruit and vegetable classification from images. Comput. Electro. Agric. 70(1), 96\u2013104 (2010). https:\/\/doi.org\/10.1016\/j.compag.2009.09.002. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S016816990900180X","DOI":"10.1016\/j.compag.2009.09.002"},{"key":"41_CR46","unstructured":"Rong, T., Zhu, Y., Cai, H., Xiong, Y.: A solution to product detection in densely packed scenes (2021)"},{"key":"41_CR47","doi-asserted-by":"crossref","unstructured":"Sheng, F., Chen, Z., Xu, B.: NRTR: a no-recurrence sequence-to-sequence model for scene text recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 781\u2013786. IEEE (2019)","DOI":"10.1109\/ICDAR.2019.00130"},{"key":"41_CR48","doi-asserted-by":"publisher","first-page":"2298","DOI":"10.1109\/TPAMI.2016.2646371","volume":"39","author":"B Shi","year":"2016","unstructured":"Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2298\u20132304 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"41_CR49","doi-asserted-by":"crossref","unstructured":"Singh, A., Pang, G., Toh, M., Huang, J., Galuba, W., Hassner, T.: TextOCR: towards large-scale end-to-end reasoning for arbitrary-shaped scene text (2021)","DOI":"10.1109\/CVPR46437.2021.00869"},{"key":"41_CR50","unstructured":"Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training. CoRR abs\/2104.00298 (2021). https:\/\/arxiv.org\/abs\/2104.00298"},{"key":"41_CR51","doi-asserted-by":"crossref","unstructured":"Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)","DOI":"10.1109\/ICCV.2019.00972"},{"key":"41_CR52","doi-asserted-by":"crossref","unstructured":"Varol, G., Kuzu, R.: Toward retail product recognition on grocery shelves. In: International Conference on Graphic and Image Processing (2015)","DOI":"10.1117\/12.2179127"},{"key":"41_CR53","doi-asserted-by":"crossref","unstructured":"Wang, W., et al.: Shape robust text detection with progressive scale expansion network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9336\u20139345 (2019)","DOI":"10.1109\/CVPR.2019.00956"},{"key":"41_CR54","doi-asserted-by":"crossref","unstructured":"Wang, W., et al.: Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In: ICCV, pp. 8439\u20138448 (2019)","DOI":"10.1109\/ICCV.2019.00853"},{"key":"41_CR55","unstructured":"Wei, X., Cui, Q., Yang, L., Wang, P., Liu, L.: RPC: a large-scale retail product checkout dataset. CoRR abs\/1901.07249 (2019). http:\/\/arxiv.org\/abs\/1901.07249"},{"key":"41_CR56","first-page":"1452","volume":"4","author":"Y Xu","year":"2020","unstructured":"Xu, Y., et al.: Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 4, 1452\u20131459 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"41_CR57","doi-asserted-by":"crossref","unstructured":"Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)","DOI":"10.1109\/CVPR.2016.596"},{"key":"41_CR58","doi-asserted-by":"crossref","unstructured":"Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. arXiv preprint arXiv:1904.11490 (2019)","DOI":"10.1109\/ICCV.2019.00975"},{"key":"41_CR59","doi-asserted-by":"publisher","unstructured":"Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1083\u20131090 (2012). https:\/\/doi.org\/10.1109\/CVPR.2012.6247787","DOI":"10.1109\/CVPR.2012.6247787"},{"key":"41_CR60","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1007\/978-3-030-58529-7_9","volume-title":"Computer Vision \u2013 ECCV 2020","author":"X Yue","year":"2020","unstructured":"Yue, X., Kuang, Z., Lin, C., Sun, H., Zhang, W.: RobustScanner: dynamically enhancing positional clues for robust text recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 135\u2013151. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58529-7_9"},{"key":"41_CR61","doi-asserted-by":"crossref","unstructured":"Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection (2020)","DOI":"10.1109\/CVPR42600.2020.00978"},{"key":"41_CR62","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1007\/978-3-030-58545-7_6","volume-title":"Computer Vision \u2013 ECCV 2020","author":"C Zhu","year":"2020","unstructured":"Zhu, C., Chen, F., Shen, Z., Savvides, M.: Soft anchor-point object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 91\u2013107. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58545-7_6"},{"key":"41_CR63","doi-asserted-by":"crossref","unstructured":"Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019","DOI":"10.1109\/CVPR.2019.00093"},{"key":"41_CR64","doi-asserted-by":"crossref","unstructured":"Zhu, Y., Chen, J., Liang, L., Kuang, Z., Jin, L., Zhang, W.: Fourier contour embedding for arbitrary-shaped text detection. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00314"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20071-7_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,12]],"date-time":"2022-11-12T05:31:54Z","timestamp":1668231114000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20071-7_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200700","9783031200717"],"references-count":64,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20071-7_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"13 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}