{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:25:10Z","timestamp":1726763110533},"publisher-location":"Cham","reference-count":35,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200670"},{"type":"electronic","value":"9783031200687"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20068-7_39","type":"book-chapter","created":{"date-parts":[[2022,11,10]],"date-time":"2022-11-10T03:06:38Z","timestamp":1668049598000},"page":"677-692","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Editable Indoor Lighting Estimation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7103-7220","authenticated-orcid":false,"given":"Henrique","family":"Weber","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1811-4156","authenticated-orcid":false,"given":"Mathieu","family":"Garon","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6583-2364","authenticated-orcid":false,"given":"Jean-Fran\u00e7ois","family":"Lalonde","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,11]]},"reference":[{"key":"39_CR1","doi-asserted-by":"crossref","unstructured":"Bai, J., et al.: Deep graph learning for spatially-varying indoor lighting prediction. arXiv preprint arXiv:2202.06300 (2022)","DOI":"10.1007\/s11432-022-3576-9"},{"issue":"8","key":"39_CR2","doi-asserted-by":"publisher","first-page":"1670","DOI":"10.1109\/TPAMI.2014.2377712","volume":"37","author":"JT Barron","year":"2014","unstructured":"Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE TPAMI 37(8), 1670\u20131687 (2014)","journal-title":"IEEE TPAMI"},{"issue":"7","key":"39_CR3","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1111\/cgf.13561","volume":"37","author":"D Cheng","year":"2018","unstructured":"Cheng, D., Shi, J., Chen, Y., Deng, X., Zhang, X.: Learning scene illumination by pairwise photos from rear and front mobile cameras. Comput. Graph. Forum 37(7), 213\u2013221 (2018)","journal-title":"Comput. Graph. Forum"},{"key":"39_CR4","doi-asserted-by":"crossref","unstructured":"Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00821"},{"key":"39_CR5","doi-asserted-by":"crossref","unstructured":"Cruz, S., Hutchcroft, W., Li, Y., Khosravan, N., Boyadzhiev, I., Kang, S.B.: Zillow indoor dataset: annotated floor plans with 360o\u0331 panoramas and 3D room layouts. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00217"},{"key":"39_CR6","doi-asserted-by":"crossref","unstructured":"Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 189\u2013198. SIGGRAPH (1998)","DOI":"10.1145\/280814.280864"},{"key":"39_CR7","doi-asserted-by":"crossref","unstructured":"Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650\u20132658 (2015)","DOI":"10.1109\/ICCV.2015.304"},{"issue":"6","key":"39_CR8","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1111\/cgf.14283","volume":"40","author":"F Einabadi","year":"2021","unstructured":"Einabadi, F., Guillemaut, J.Y., Hilton, A.: Deep neural models for illumination estimation and relighting: a survey. Comput. Graph. Forum 40(6), 315\u2013331 (2021)","journal-title":"Comput. Graph. Forum"},{"issue":"2","key":"39_CR9","doi-asserted-by":"publisher","first-page":"1255","DOI":"10.1109\/LRA.2020.2967274","volume":"5","author":"C Fernandez-Labrador","year":"2020","unstructured":"Fernandez-Labrador, C., Facil, J.M., Perez-Yus, A., Demonceaux, C., Civera, J., Guerrero, J.J.: Corners for layout: End-to-end layout recovery from 360 images. IEEE Rob. Autom. Lett. 5(2), 1255\u20131262 (2020)","journal-title":"IEEE Rob. Autom. Lett."},{"key":"39_CR10","doi-asserted-by":"crossref","unstructured":"Gardner, M.A., Hold-Geoffroy, Y., Sunkavalli, K., Gagne, C., Lalonde, J.F.: Deep parametric indoor lighting estimation. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00727"},{"key":"39_CR11","doi-asserted-by":"crossref","unstructured":"Gardner, M.A., et al.: Learning to predict indoor illumination from a single image. ACM TOG 36(6) (2017)","DOI":"10.1145\/3130800.3130891"},{"key":"39_CR12","doi-asserted-by":"crossref","unstructured":"Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00707"},{"key":"39_CR13","doi-asserted-by":"crossref","unstructured":"Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2335\u20132342. IEEE (2009)","DOI":"10.1109\/ICCV.2009.5459428"},{"key":"39_CR14","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"39_CR15","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arxiv preprint arxiv:1412.6980 (2014)"},{"key":"39_CR16","doi-asserted-by":"crossref","unstructured":"Lee, C.Y., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: Roomnet: end-to-end room layout estimation. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.521"},{"key":"39_CR17","doi-asserted-by":"crossref","unstructured":"LeGendre, C., et al.: Deeplight: learning illumination for unconstrained mobile mixed reality. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00607"},{"issue":"6","key":"39_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3272127.3275055","volume":"37","author":"TM Li","year":"2018","unstructured":"Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray tracing through edge sampling. ACM TOG 37(6), 1\u201311 (2018)","journal-title":"ACM TOG"},{"key":"39_CR19","doi-asserted-by":"crossref","unstructured":"Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and svbrdf from a single image. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00255"},{"key":"39_CR20","doi-asserted-by":"crossref","unstructured":"Mandl, D., et al.: Learning lightprobes for mixed reality illumination. In: ISMAR (2017)","DOI":"10.1109\/ISMAR.2017.25"},{"key":"39_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1007\/978-3-030-58545-7_19","volume-title":"Computer Vision \u2013 ECCV 2020","author":"T Park","year":"2020","unstructured":"Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319\u2013345. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58545-7_19"},{"key":"39_CR22","doi-asserted-by":"crossref","unstructured":"Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00869"},{"key":"39_CR23","doi-asserted-by":"crossref","unstructured":"Somanath, G., Kurz, D.: HDR environment map estimation for real-time augmented reality. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.01114"},{"key":"39_CR24","doi-asserted-by":"crossref","unstructured":"Song, S., Funkhouser, T.: Neural illumination: lighting prediction for indoor environments. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00708"},{"key":"39_CR25","doi-asserted-by":"crossref","unstructured":"Srinivasan, P.P., Mildenhall, B., Tancik, M., Barron, J.T., Tucker, R., Snavely, N.: Lighthouse: predicting lighting volumes for spatially-coherent illumination. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00810"},{"key":"39_CR26","doi-asserted-by":"crossref","unstructured":"Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00917"},{"key":"39_CR27","doi-asserted-by":"crossref","unstructured":"Wang, Z., Philion, J., Fidler, S., Kautz, J.: Learning indoor inverse rendering with 3D spatially-varying lighting. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.01231"},{"key":"39_CR28","doi-asserted-by":"crossref","unstructured":"Weber, H., Pr\u00e9vost, D., Lalonde, J.F.: Learning to estimate indoor lighting from 3D objects. In: 3DV (2018)","DOI":"10.1109\/3DV.2018.00032"},{"key":"39_CR29","doi-asserted-by":"crossref","unstructured":"Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: end-to-end view synthesis from a single image. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00749"},{"key":"39_CR30","doi-asserted-by":"crossref","unstructured":"Yang, C., Zheng, J., Dai, X., Tang, R., Ma, Y., Yuan, X.: Learning to reconstruct 3D non-cuboid room layout from a single rgb image. In: Winter Conference on Applications of Computer Vision (2022)","DOI":"10.1109\/WACV51458.2022.00031"},{"key":"39_CR31","first-page":"2268","volume":"31","author":"F Zhan","year":"2022","unstructured":"Zhan, F., et al.: Gmlight: lighting estimation via geometric distribution approximation. IEEE TIP 31, 2268\u20132278 (2022)","journal-title":"IEEE TIP"},{"key":"39_CR32","doi-asserted-by":"crossref","unstructured":"Zhan, F., et al.: Sparse needlets for lighting estimation with spherical transport loss. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.01259"},{"key":"39_CR33","doi-asserted-by":"crossref","unstructured":"Zhan, F., et al.: Emlight: lighting estimation via spherical distribution approximation. In: AAAI (2021)","DOI":"10.1609\/aaai.v35i4.16440"},{"key":"39_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"678","DOI":"10.1007\/978-3-030-58592-1_40","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Zhao","year":"2020","unstructured":"Zhao, Y., Guo, T.: PointAR: efficient lighting estimation for mobile augmented reality. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 678\u2013693. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58592-1_40"},{"key":"39_CR35","doi-asserted-by":"crossref","unstructured":"Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: reconstructing the 3D room layout from a single rgb image. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00219"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20068-7_39","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T13:26:44Z","timestamp":1678541204000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20068-7_39"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200670","9783031200687"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20068-7_39","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"11 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}