{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:13:38Z","timestamp":1728177218127},"publisher-location":"Cham","reference-count":62,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200588"},{"type":"electronic","value":"9783031200595"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20059-5_31","type":"book-chapter","created":{"date-parts":[[2022,10,28]],"date-time":"2022-10-28T16:02:50Z","timestamp":1666972970000},"page":"540-557","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":105,"title":["Scaling Open-Vocabulary Image Segmentation with\u00a0Image-Level Labels"],"prefix":"10.1007","author":[{"given":"Golnaz","family":"Ghiasi","sequence":"first","affiliation":[]},{"given":"Xiuye","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Yin","family":"Cui","sequence":"additional","affiliation":[]},{"given":"Tsung-Yi","family":"Lin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,29]]},"reference":[{"key":"31_CR1","unstructured":"Agarwal, S., Krueger, G., Clark, J., Radford, A., Kim, J.W., Brundage, M.: Evaluating clip: towards characterization of broader capabilities and downstream implications. arXiv preprint arXiv:2108.02818 (2021)"},{"key":"31_CR2","doi-asserted-by":"publisher","first-page":"898","DOI":"10.1109\/TPAMI.2010.161","volume":"33","author":"P Arbelaez","year":"2010","unstructured":"Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33, 898\u2013916 (2010)","journal-title":"PAMI"},{"key":"31_CR3","doi-asserted-by":"crossref","unstructured":"Arbelaez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR (2014)","DOI":"10.1109\/CVPR.2014.49"},{"key":"31_CR4","doi-asserted-by":"crossref","unstructured":"Baek, D., Oh, Y., Ham, B.: Exploiting a joint embedding space for generalized zero-shot semantic segmentation. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00940"},{"issue":"3","key":"31_CR5","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/s11263-018-1140-0","volume":"127","author":"B Zhou","year":"2018","unstructured":"Zhou, B., et al.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis. 127(3), 302\u2013321 (2018). https:\/\/doi.org\/10.1007\/s11263-018-1140-0","journal-title":"Int. J. Comput. Vis."},{"key":"31_CR6","unstructured":"Bucher, M., Vu, T.H., Cord, M., P\u00e9rez, P.: Zero-shot semantic segmentation. In: NeurIPS (2019)"},{"key":"31_CR7","doi-asserted-by":"crossref","unstructured":"Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00132"},{"key":"31_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1007\/978-3-030-58452-8_13","volume-title":"Computer Vision \u2013 ECCV 2020","author":"N Carion","year":"2020","unstructured":"Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213\u2013229. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_13"},{"key":"31_CR9","unstructured":"Chen, X., et al.: Microsoft coco captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)"},{"key":"31_CR10","unstructured":"Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. arXiv preprint arXiv:2107.06278 (2021)"},{"key":"31_CR11","unstructured":"Comaniciu, D., Meer, P.: Robust analysis of feature spaces: color image segmentation. In: CVPR (1997)"},{"key":"31_CR12","doi-asserted-by":"crossref","unstructured":"Ding, H., Liu, C., Wang, S., Jiang, X.: Vision-language transformer and query generation for referring segmentation. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.01601"},{"key":"31_CR13","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303\u2013338 (2010). https:\/\/doi.org\/10.1007\/s11263-009-0275-4","journal-title":"Int. J. Comput. Vis."},{"key":"31_CR14","doi-asserted-by":"crossref","unstructured":"Fang, H., et al.: From captions to visual concepts and back. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7298754"},{"key":"31_CR15","doi-asserted-by":"crossref","unstructured":"Fukui, A., Park, D.H., Yang, D., Rohrbach, A., Darrell, T., Rohrbach, M.: Multimodal compact bilinear pooling for visual question answering and visual grounding. arXiv preprint arXiv:1606.01847 (2016)","DOI":"10.18653\/v1\/D16-1044"},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00294"},{"key":"31_CR17","doi-asserted-by":"crossref","unstructured":"Ghiasi, G., Zoph, B., Cubuk, E.D., Le, Q.V., Lin, T.Y.: Multi-task self-training for learning general representations. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00873"},{"key":"31_CR18","unstructured":"Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Zero-shot detection via vision and language knowledge distillation. arXiv e-prints, p. arXiv\u20132104 (2021)"},{"key":"31_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"752","DOI":"10.1007\/978-3-030-58580-8_44","volume-title":"Computer Vision \u2013 ECCV 2020","author":"T Gupta","year":"2020","unstructured":"Gupta, T., Vahdat, A., Chechik, G., Yang, X., Kautz, J., Hoiem, D.: Contrastive learning for weakly supervised phrase grounding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 752\u2013768. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58580-8_44"},{"key":"31_CR20","unstructured":"Hu, P., Sclaroff, S., Saenko, K.: Uncertainty-aware learning for zero-shot semantic segmentation. In: NeurIPS (2020)"},{"key":"31_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1007\/978-3-319-46448-0_7","volume-title":"Computer Vision \u2013 ECCV 2016","author":"R Hu","year":"2016","unstructured":"Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 108\u2013124. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_7"},{"key":"31_CR22","doi-asserted-by":"crossref","unstructured":"Hu, Z., Feng, G., Sun, J., Zhang, L., Lu, H.: Bi-directional relationship inferring network for referring image segmentation. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00448"},{"key":"31_CR23","unstructured":"Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. ICML (2021)"},{"key":"31_CR24","doi-asserted-by":"crossref","unstructured":"Jo, S., Yu, I.J.: Puzzle-CAM: improved localization via matching partial and full features. arXiv preprint arXiv:2101.11253 (2021)","DOI":"10.1109\/ICIP42928.2021.9506058"},{"key":"31_CR25","doi-asserted-by":"crossref","unstructured":"Kamath, A., Singh, M., LeCun, Y., Misra, I., Synnaeve, G., Carion, N.: Mdetr-modulated detection for end-to-end multi-modal understanding. arXiv preprint arXiv:2104.12763 (2021)","DOI":"10.1109\/ICCV48922.2021.00180"},{"key":"31_CR26","doi-asserted-by":"crossref","unstructured":"Kirillov, A., He, K., Girshick, R., Rother, C., Dollar, P.: Panoptic segmentation. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00963"},{"key":"31_CR27","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1007\/s11263-016-0981-7","volume":"123","author":"R Krishna","year":"2017","unstructured":"Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. IJCV 123, 32\u201373 (2017)","journal-title":"IJCV"},{"key":"31_CR28","doi-asserted-by":"crossref","unstructured":"Lambert, J., Liu, Z., Sener, O., Hays, J., Koltun, V.: MSeg: A composite dataset for multi-domain semantic segmentation. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00295"},{"key":"31_CR29","unstructured":"Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. In: ICLR (2022)"},{"key":"31_CR30","unstructured":"Li, P., Wei, Y., Yang, Y.: Consistent structural relation learning for zero-shot segmentation. In: NeurIPS (2020)"},{"key":"31_CR31","doi-asserted-by":"crossref","unstructured":"Li, Y., Kuang, Z., Liu, L., Chen, Y., Zhang, W.: Pseudo-mask matters in weakly-supervised semantic segmentation. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00688"},{"key":"31_CR32","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"31_CR33","doi-asserted-by":"publisher","first-page":"819","DOI":"10.1109\/TPAMI.2017.2700300","volume":"40","author":"KK Maninis","year":"2018","unstructured":"Maninis, K.K., Pont-Tuset, J., Arbel\u00e1ez, P., Gool, L.V.: Convolutional oriented boundaries: from image segmentation to high-level tasks. TPAMI 40, 819\u2013833 (2018)","journal-title":"TPAMI"},{"key":"31_CR34","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"31_CR35","doi-asserted-by":"crossref","unstructured":"Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: CVPR (2014)","DOI":"10.1109\/CVPR.2014.119"},{"key":"31_CR36","doi-asserted-by":"crossref","unstructured":"Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7298780"},{"key":"31_CR37","doi-asserted-by":"crossref","unstructured":"Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: ICCV (2015)","DOI":"10.1109\/ICCV.2015.303"},{"key":"31_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"647","DOI":"10.1007\/978-3-030-58558-7_38","volume-title":"Computer Vision \u2013 ECCV 2020","author":"J Pont-Tuset","year":"2020","unstructured":"Pont-Tuset, J., Uijlings, J., Changpinyo, S., Soricut, R., Ferrari, V.: Connecting vision and language with localized narratives. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 647\u2013664. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58558-7_38"},{"key":"31_CR39","unstructured":"Qi, L., et al.: Open-world entity segmentation. arXiv preprint arXiv:2107.14228 (2021)"},{"key":"31_CR40","unstructured":"Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)"},{"key":"31_CR41","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"817","DOI":"10.1007\/978-3-319-46448-0_49","volume-title":"Computer Vision \u2013 ECCV 2016","author":"A Rohrbach","year":"2016","unstructured":"Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual phrases in images by reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 817\u2013834. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_49"},{"key":"31_CR42","doi-asserted-by":"publisher","first-page":"888","DOI":"10.1109\/34.868688","volume":"22","author":"J Shi","year":"2000","unstructured":"Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22, 888\u2013905 (2000)","journal-title":"PAMI"},{"key":"31_CR43","unstructured":"Shridhar, M., Manuelli, L., Fox, D.: CLIPORT: what and where pathways for robotic manipulation. In: Proceedings of the 5th Conference on Robot Learning (CoRL) (2021)"},{"key":"31_CR44","unstructured":"Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML (2019)"},{"key":"31_CR45","doi-asserted-by":"publisher","first-page":"154","DOI":"10.1007\/s11263-013-0620-5","volume":"104","author":"JRR Uijlings","year":"2013","unstructured":"Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154\u2013171 (2013). https:\/\/doi.org\/10.1007\/s11263-013-0620-5","journal-title":"Int. J. Comput. Vis."},{"key":"31_CR46","doi-asserted-by":"crossref","unstructured":"Wang, H., Zhu, Y., Adam, H., Yuille, A., Chen, L.C.: MaX-DeepLab: end-to-end panoptic segmentation with mask transformers. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00542"},{"key":"31_CR47","doi-asserted-by":"crossref","unstructured":"Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.01229"},{"key":"31_CR48","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1037\/11496-005","volume-title":"A Source Book of Gestalt Psychology","author":"M Wertheimer","year":"1938","unstructured":"Wertheimer, M.: Laws of organization in perceptual forms. In: Ellis, W. (ed.) A Source Book of Gestalt Psychology, pp. 71\u201388. Routledge and Kegan Paul, London (1938)"},{"key":"31_CR49","doi-asserted-by":"crossref","unstructured":"Xian, Y., Choudhury, S., He, Y., Schiele, B., Akata, Z.: Semantic projection network for zero-and few-label semantic segmentation. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00845"},{"key":"31_CR50","doi-asserted-by":"crossref","unstructured":"Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.01070"},{"key":"31_CR51","doi-asserted-by":"crossref","unstructured":"Xu, J., et al.: GroupViT: Semantic segmentation emerges from text supervision. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01760"},{"key":"31_CR52","doi-asserted-by":"crossref","unstructured":"Xu, L., Ouyang, W., Bennamoun, M., Boussaid, F., Sohel, F., Xu, D.: Leveraging auxiliary tasks with affinity learning for weakly supervised semantic segmentation. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00690"},{"key":"31_CR53","doi-asserted-by":"crossref","unstructured":"Xu, M., et al.: A simple baseline for zero-shot semantic segmentation with pre-trained vision-language model. arXiv preprint arXiv:2112.14757 (2021)","DOI":"10.1007\/978-3-031-19818-2_42"},{"key":"31_CR54","doi-asserted-by":"crossref","unstructured":"Ye, L., Rochan, M., Liu, Z., Wang, Y.: Cross-modal self-attention network for referring image segmentation. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.01075"},{"key":"31_CR55","doi-asserted-by":"crossref","unstructured":"Yu, L., et al.: MAttNet: Modular attention network for referring expression comprehension. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00142"},{"key":"31_CR56","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/978-3-319-46475-6_5","volume-title":"Computer Vision \u2013 ECCV 2016","author":"L Yu","year":"2016","unstructured":"Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69\u201385. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_5"},{"key":"31_CR57","unstructured":"Zabari, N., Hoshen, Y.: Semantic segmentation in-the-wild without seeing any segmentation examples. arXiv preprint arXiv:2112.03185 (2021)"},{"key":"31_CR58","doi-asserted-by":"crossref","unstructured":"Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.01416"},{"key":"31_CR59","doi-asserted-by":"crossref","unstructured":"Zhao, H., Puig, X., Zhou, B., Fidler, S., Torralba, A.: Open vocabulary scene parsing. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.221"},{"key":"31_CR60","doi-asserted-by":"crossref","unstructured":"Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.319"},{"key":"31_CR61","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/s11263-018-1140-0","volume":"127","author":"B Zhou","year":"2019","unstructured":"Zhou, B., et al.: Semantic understanding of scenes through the ADE20K dataset. IJCV 127, 302\u2013321 (2019)","journal-title":"IJCV"},{"key":"31_CR62","doi-asserted-by":"crossref","unstructured":"Zhou, C., Loy, C.C., Dai, B.: DenseCLIP: extract free dense labels from clip. arXiv preprint arXiv:2112.01071 (2021)","DOI":"10.1007\/978-3-031-19815-1_40"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20059-5_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,28]],"date-time":"2022-10-28T16:13:23Z","timestamp":1666973603000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20059-5_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200588","9783031200595"],"references-count":62,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20059-5_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"29 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}