{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:53:52Z","timestamp":1726178032284},"publisher-location":"Cham","reference-count":33,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200496"},{"type":"electronic","value":"9783031200502"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20050-2_41","type":"book-chapter","created":{"date-parts":[[2022,10,27]],"date-time":"2022-10-27T22:09:58Z","timestamp":1666908598000},"page":"710-726","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["AdaBest: Minimizing Client Drift in\u00a0Federated Learning via\u00a0Adaptive Bias Estimation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4691-5412","authenticated-orcid":false,"given":"Farshid","family":"Varno","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5737-3188","authenticated-orcid":false,"given":"Marzie","family":"Saghayi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4163-9591","authenticated-orcid":false,"given":"Laya","family":"Rafiee Sevyeri","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1848-9935","authenticated-orcid":false,"given":"Sharut","family":"Gupta","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6629-8434","authenticated-orcid":false,"given":"Stan","family":"Matwin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3603-5067","authenticated-orcid":false,"given":"Mohammad","family":"Havaei","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,28]]},"reference":[{"key":"41_CR1","unstructured":"Acar, D.A.E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P., Saligrama, V.: Federated learning based on dynamic regularization. In: International Conference on Learning Representations (2020)"},{"key":"41_CR2","unstructured":"Ajalloeian, A., Stich, S.U.: On the convergence of SGD with biased gradients. arXiv preprint arXiv:2008.00051 (2020)"},{"key":"41_CR3","unstructured":"Harikandeh, R.B., Ahmed, M.O., Virani, A., Schmidt, M., Kone\u010dn\u1ef3, J., Sallinen, S.: Stopwasting my gradients: practical svrg. Adv. Neural Inf. Process. Syst. 28 (2015)"},{"key":"41_CR4","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1007\/978-3-030-86523-8_9","volume-title":"Machine Learning and Knowledge Discovery in Databases. Research Track","author":"J Bi","year":"2021","unstructured":"Bi, J., Gunn, S.R.: A variance controlled stochastic method with biased estimation for faster non-convex optimization. In: Oliver, N., P\u00e9rez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12977, pp. 135\u2013150. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86523-8_9"},{"key":"41_CR5","unstructured":"Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)"},{"key":"41_CR6","first-page":"315","volume":"26","author":"R Johnson","year":"2013","unstructured":"Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. Adv. Neural. Inf. Process. Syst. 26, 315\u2013323 (2013)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"41_CR7","unstructured":"Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132\u20135143. PMLR (2020)"},{"issue":"2","key":"41_CR8","doi-asserted-by":"publisher","first-page":"242","DOI":"10.1109\/JSTSP.2015.2505682","volume":"10","author":"J Kone\u010dn\u1ef3","year":"2015","unstructured":"Kone\u010dn\u1ef3, J., Liu, J., Richt\u00e1rik, P., Tak\u00e1\u010d, M.: Mini-batch semi-stochastic gradient descent in the proximal setting. IEEE J. Sel. Top. Signal Process. 10(2), 242\u2013255 (2015)","journal-title":"IEEE J. Sel. Top. Signal Process."},{"key":"41_CR9","unstructured":"Kone\u010dn\u1ef3, J., McMahan, H.B., Ramage, D., Richt\u00e1rik, P.: Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)"},{"key":"41_CR10","unstructured":"Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. University of Toronto, Technical report (2009)"},{"issue":"11","key":"41_CR11","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"41_CR12","unstructured":"Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 (2019)"},{"key":"41_CR13","first-page":"429","volume":"2","author":"T Li","year":"2020","unstructured":"Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429\u2013450 (2020)","journal-title":"Proc. Mach. Learn. Syst."},{"key":"41_CR14","doi-asserted-by":"crossref","unstructured":"Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smithy, V.: FedDANE: a federated newton-type method. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 1227\u20131231. IEEE (2019)","DOI":"10.1109\/IEEECONF44664.2019.9049023"},{"key":"41_CR15","unstructured":"Liang, X., Shen, S., Liu, J., Pan, Z., Chen, E., Cheng, Y.: Variance reduced local SGD with lower communication complexity. arXiv preprint arXiv:1912.12844 (2019)"},{"key":"41_CR16","first-page":"2351","volume":"33","author":"T Lin","year":"2020","unstructured":"Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. Adv. Neural. Inf. Process. Syst. 33, 2351\u20132363 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"41_CR17","unstructured":"McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273\u20131282. PMLR (2017)"},{"key":"41_CR18","unstructured":"Murata, T., Suzuki, T.: Bias-variance reduced local SGD for less heterogeneous federated learning. In: International Conference on Machine Learning, pp. 7872\u20137881. PMLR (2021)"},{"key":"41_CR19","unstructured":"Nguyen, L.M., Liu, J., Scheinberg, K., Tak\u00e1\u010d, M.: SARAH: a novel method for machine learning problems using stochastic recursive gradient. In: International Conference on Machine Learning, pp. 2613\u20132621. PMLR (2017)"},{"key":"41_CR20","first-page":"7057","volume":"33","author":"R Pathak","year":"2020","unstructured":"Pathak, R., Wainwright, M.J.: FedSplit: an algorithmic framework for fast federated optimization. Adv. Neural. Inf. Process. Syst. 33, 7057\u20137066 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"41_CR21","unstructured":"Reddi, S.J., Kone\u010dn\u1ef3, J., Richt\u00e1rik, P., P\u00f3cz\u00f3s, B., Smola, A.: AIDE: fast and communication efficient distributed optimization. arXiv preprint arXiv:1608.06879 (2016)"},{"key":"41_CR22","unstructured":"Roux, N., Schmidt, M., Bach, F.: A stochastic gradient method with an exponential convergence _rate for finite training sets. Adv. Neural Inf. Process. Syst. 25 (2012)"},{"key":"41_CR23","doi-asserted-by":"crossref","unstructured":"Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss minimization. J. Mach. Learn. Res. 14(2) (2013)","DOI":"10.1007\/s10107-014-0839-0"},{"key":"41_CR24","unstructured":"Shamir, O., Srebro, N., Zhang, T.: Communication-efficient distributed optimization using an approximate newton-type method. In: International Conference on Machine Learning, pp. 1000\u20131008. PMLR (2014)"},{"key":"41_CR25","unstructured":"Stich, S.U.: Local SGD converges fast and communicates little. In: International Conference on Learning Representations (2018)"},{"key":"41_CR26","first-page":"7611","volume":"33","author":"J Wang","year":"2020","unstructured":"Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural. Inf. Process. Syst. 33, 7611\u20137623 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"41_CR27","unstructured":"Wang, J., Tantia, V., Ballas, N., Rabbat, M.: SlowMo: improving communication-efficient distributed SGD with slow momentum. arXiv preprint arXiv:1910.00643 (2019)"},{"issue":"4","key":"41_CR28","doi-asserted-by":"publisher","first-page":"2057","DOI":"10.1137\/140961791","volume":"24","author":"L Xiao","year":"2014","unstructured":"Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim. 24(4), 2057\u20132075 (2014)","journal-title":"SIAM J. Optim."},{"key":"41_CR29","unstructured":"Yu, H., Jin, R., Yang, S.: On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization. In: International Conference on Machine Learning, pp. 7184\u20137193. PMLR (2019)"},{"key":"41_CR30","doi-asserted-by":"crossref","unstructured":"Zhang, X., Hong, M., Dhople, S., Yin, W., Liu, Y.: FedPD: a federated learning framework with optimal rates and adaptivity to Non-IID data. arXiv preprint arXiv:2005.11418 (2020)","DOI":"10.1109\/TSP.2021.3115952"},{"key":"41_CR31","unstructured":"Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with Non-IID data. arXiv preprint arXiv:1806.00582 (2018)"},{"key":"41_CR32","doi-asserted-by":"crossref","unstructured":"Zhu, L., Han, S.: Deep leakage from gradients. In: Federated Learning, pp. 17\u201331. Springer (2020)","DOI":"10.1007\/978-3-030-63076-8_2"},{"key":"41_CR33","unstructured":"Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous federated learning. In: International Conference on Machine Learning, pp. 12878\u201312889. PMLR (2021)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20050-2_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,27]],"date-time":"2022-10-27T22:33:37Z","timestamp":1666910017000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20050-2_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200496","9783031200502"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20050-2_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"28 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}