{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:30:05Z","timestamp":1727065805111},"publisher-location":"Cham","reference-count":70,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200496"},{"type":"electronic","value":"9783031200502"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20050-2_26","type":"book-chapter","created":{"date-parts":[[2022,10,27]],"date-time":"2022-10-27T22:09:58Z","timestamp":1666908598000},"page":"440-457","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":34,"title":["Domain Generalization by\u00a0Mutual-Information Regularization with\u00a0Pre-trained Models"],"prefix":"10.1007","author":[{"given":"Junbum","family":"Cha","sequence":"first","affiliation":[]},{"given":"Kyungjae","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Sungrae","family":"Park","sequence":"additional","affiliation":[]},{"given":"Sanghyuk","family":"Chun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,28]]},"reference":[{"key":"26_CR1","doi-asserted-by":"crossref","unstructured":"Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: Computer Vision and Pattern Recognition (2019)","DOI":"10.1109\/CVPR.2019.00938"},{"key":"26_CR2","unstructured":"Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)"},{"key":"26_CR3","unstructured":"Bahng, H., Chun, S., Yun, S., Choo, J., Oh, S.J.: Learning de-biased representations with biased representations. In: International Conference on Machine Learning (2020)"},{"key":"26_CR4","doi-asserted-by":"crossref","unstructured":"Bai, H., et al.: Decaug: Out-of-distribution generalization via decomposed feature representation and semantic augmentation. In: AAAI Conference on Artificial Intelligence (2021)","DOI":"10.1609\/aaai.v35i8.16829"},{"key":"26_CR5","unstructured":"Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain generalization using meta-regularization. In: Neural Information Processing Systems (2018)"},{"issue":"2","key":"26_CR6","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1109\/TMI.2018.2867350","volume":"38","author":"P Bandi","year":"2018","unstructured":"Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550\u2013560 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"26_CR7","doi-asserted-by":"crossref","unstructured":"Barber, D., Agakov, F.: The im algorithm: a variational approach to information maximization. In: Neural Information Processing Systems (2004)","DOI":"10.1007\/978-3-540-30499-9_83"},{"key":"26_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"472","DOI":"10.1007\/978-3-030-01270-0_28","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Beery","year":"2018","unstructured":"Beery, S., Van Horn, G., Perona, P.: Recognition in Terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472\u2013489. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01270-0_28"},{"key":"26_CR9","unstructured":"Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning (2018)"},{"issue":"2","key":"26_CR10","first-page":"1","volume":"22","author":"G Blanchard","year":"2021","unstructured":"Blanchard, G., Deshmukh, A.A., Dogan, U., Lee, G., Scott, C.: Domain generalization by marginal transfer learning. J. Mach. Learn. Res. 22(2), 1\u201355 (2021)","journal-title":"J. Mach. Learn. Res."},{"key":"26_CR11","unstructured":"Bui, M.H., Tran, T., Tran, A., Phung, D.: Exploiting domain-specific features to enhance domain generalization. In: Neural Information Processing Systems (2021)"},{"key":"26_CR12","doi-asserted-by":"crossref","unstructured":"Carlucci, F.M., D\u2019Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: Computer Vision and Pattern Recognition (2019)","DOI":"10.1109\/CVPR.2019.00233"},{"key":"26_CR13","unstructured":"Cha, J., et al.: Swad: Domain generalization by seeking flat minima. In: Neural Information Processing Systems (2021)"},{"key":"26_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"301","DOI":"10.1007\/978-3-030-58545-7_18","volume-title":"Computer Vision \u2013 ECCV 2020","author":"P Chattopadhyay","year":"2020","unstructured":"Chattopadhyay, P., Balaji, Y., Hoffman, J.: Learning to balance specificity and invariance for in and out of domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 301\u2013318. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58545-7_18"},{"key":"26_CR15","unstructured":"Chen, J., Wang, J., Lin, W., Zhang, K., de Silva, C.W.: Preserving domain private representation via mutual information maximization. arXiv preprint arXiv:2201.03102 (2022)"},{"key":"26_CR16","doi-asserted-by":"crossref","unstructured":"Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: International Conference on Computer Vision (2021)","DOI":"10.1109\/ICCV48922.2021.00950"},{"key":"26_CR17","doi-asserted-by":"crossref","unstructured":"Dai, D., Van Gool, L.: Dark model adaptation: Semantic image segmentation from daytime to nighttime. In: International Conference on Intelligent Transportation Systems (2018)","DOI":"10.1109\/ITSC.2018.8569387"},{"key":"26_CR18","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021)"},{"key":"26_CR19","unstructured":"Dou, Q., Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Neural Information Processing System (2019)"},{"key":"26_CR20","unstructured":"Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. University of Montreal 1341(3), 1 (2009)"},{"key":"26_CR21","doi-asserted-by":"crossref","unstructured":"Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. In: International Conference on Computer Vision (2013)","DOI":"10.1109\/ICCV.2013.208"},{"issue":"1","key":"26_CR22","first-page":"2030","volume":"17","author":"Y Ganin","year":"2016","unstructured":"Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030\u20132096 (2016)","journal-title":"J. Mach. Learn. Res."},{"key":"26_CR23","unstructured":"Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2019)"},{"key":"26_CR24","unstructured":"Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International Conference on Learning Representations (2021)"},{"key":"26_CR25","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"26_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"124","DOI":"10.1007\/978-3-030-58536-5_8","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Huang","year":"2020","unstructured":"Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124\u2013140. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58536-5_8"},{"key":"26_CR27","doi-asserted-by":"crossref","unstructured":"Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: Selfreg: Self-supervised contrastive regularization for domain generalization. In: International Conference on Computer Vision (2021)","DOI":"10.1109\/ICCV48922.2021.00948"},{"key":"26_CR28","unstructured":"Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (2015)"},{"key":"26_CR29","unstructured":"Koh, P.W., et al.: Wilds: A benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning (2021)"},{"key":"26_CR30","unstructured":"Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (rex). arXiv preprint arXiv:2003.00688 (2020)"},{"key":"26_CR31","unstructured":"Kumar, A., Raghunathan, A., Jones, R., Ma, T., Liang, P.: Fine-tuning can distort pretrained features and underperform out-of-distribution. In: International Conference on Learning Representations (2022)"},{"key":"26_CR32","doi-asserted-by":"crossref","unstructured":"Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: Meta-learning for domain generalization. In: AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.11596"},{"key":"26_CR33","doi-asserted-by":"crossref","unstructured":"Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: International Conference on Computer Vision (2017)","DOI":"10.1109\/ICCV.2017.591"},{"key":"26_CR34","doi-asserted-by":"crossref","unstructured":"Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. In: International Conference on Computer Vision (2019)","DOI":"10.1109\/ICCV.2019.00153"},{"key":"26_CR35","doi-asserted-by":"crossref","unstructured":"Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Computer Vision and Pattern Recognition (2018)","DOI":"10.1109\/CVPR.2018.00566"},{"key":"26_CR36","unstructured":"Li, X., Xiong, H., Wang, H., Rao, Y., Liu, L., Huan, J.: Delta: Deep learning transfer using feature map with attention for convolutional networks. In: International Conference on Learning Representations (2019)"},{"key":"26_CR37","doi-asserted-by":"crossref","unstructured":"Li, Y., Gong, M., Tian, X., Liu, T., Tao, D.: Domain generalization via conditional invariant representations. In: AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.11682"},{"issue":"12","key":"26_CR38","doi-asserted-by":"publisher","first-page":"2935","DOI":"10.1109\/TPAMI.2017.2773081","volume":"40","author":"Z Li","year":"2017","unstructured":"Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935\u20132947 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"26_CR39","doi-asserted-by":"crossref","unstructured":"Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. In: AAAI Conference on Artificial Intelligence (2020)","DOI":"10.1609\/aaai.v34i07.6846"},{"key":"26_CR40","unstructured":"Michaelis, C., et al.: Benchmarking robustness in object detection: Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)"},{"key":"26_CR41","unstructured":"Muandet, K., Balduzzi, D., Sch\u00f6lkopf, B.: Domain generalization via invariant feature representation. In: International Conference on Machine Learning (2013)"},{"key":"26_CR42","doi-asserted-by":"crossref","unstructured":"Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: Computer Vision and Pattern Recognition (2021)","DOI":"10.1109\/CVPR46437.2021.00858"},{"key":"26_CR43","doi-asserted-by":"crossref","unstructured":"Nuriel, O., Benaim, S., Wolf, L.: Permuted adain: Reducing the bias towards global statistics in image classification. In: Computer Vision and Pattern Recognition (2021)","DOI":"10.1109\/CVPR46437.2021.00936"},{"key":"26_CR44","doi-asserted-by":"crossref","unstructured":"Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: International Conference on Computer Vision (2019)","DOI":"10.1109\/ICCV.2019.00149"},{"key":"26_CR45","unstructured":"Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (2021)"},{"key":"26_CR46","doi-asserted-by":"crossref","unstructured":"Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Doll\u00e1r, P.: Designing network design spaces. In: Computer Vision and Pattern Recognition (2020)","DOI":"10.1109\/CVPR42600.2020.01044"},{"key":"26_CR47","unstructured":"Robey, A., Pappas, G.J., Hassani, H.: Model-based domain generalization. In: Neural Information Processing Systems (2021)"},{"issue":"3","key":"26_CR48","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vision"},{"key":"26_CR49","unstructured":"Sagawa*, S., Koh*, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks. In: International Conference on Learning Representations (2020)"},{"key":"26_CR50","unstructured":"Scimeca, L., Oh, S.J., Chun, S., Poli, M., Yun, S.: Which shortcut cues will dnns choose? a study from the parameter-space perspective. In: International Conference on Learning Representations (2022)"},{"key":"26_CR51","unstructured":"Shi, Y., et al.: Gradient matching for domain generalization. In: International Conference on Learning Representations (2022)"},{"key":"26_CR52","doi-asserted-by":"crossref","unstructured":"Singh, M., et al.: Revisiting weakly supervised pre-training of visual perception models. In: Computer Vision and Pattern Recognition (2022)","DOI":"10.1109\/CVPR52688.2022.00088"},{"key":"26_CR53","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"443","DOI":"10.1007\/978-3-319-49409-8_35","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"B Sun","year":"2016","unstructured":"Sun, B., Saenko, K.: Deep CORAL: Correlation alignment for deep domain adaptation. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443\u2013450. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-49409-8_35"},{"key":"26_CR54","unstructured":"Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: International Conference on Learning Representations (2019)"},{"key":"26_CR55","unstructured":"Vapnik, V.: Statistical learning theory. Wiley, NY (1998)"},{"key":"26_CR56","doi-asserted-by":"crossref","unstructured":"Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Computer Vision and Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.572"},{"key":"26_CR57","unstructured":"de Vries, T., Misra, I., Wang, C., van der Maaten, L.: Does object recognition work for everyone? In: Computer Vision and Pattern Recognition Workshops (2019)"},{"key":"26_CR58","doi-asserted-by":"crossref","unstructured":"Wang, Y., Li, H., Kot, A.C.: Heterogeneous domain generalization via domain mixup. In: International Conference on Acoustics, Speech and Signal Processing (2020)","DOI":"10.1109\/ICASSP40776.2020.9053273"},{"key":"26_CR59","doi-asserted-by":"crossref","unstructured":"Wortsman, M., et al.: Robust fine-tuning of zero-shot models. In: Computer Vision and Pattern Recognition (2022)","DOI":"10.1109\/CVPR52688.2022.00780"},{"key":"26_CR60","unstructured":"Xiao, K.Y., Engstrom, L., Ilyas, A., Madry, A.: Noise or signal: The role of image backgrounds in object recognition. In: International Conference on Learning Representations (2020)"},{"key":"26_CR61","doi-asserted-by":"crossref","unstructured":"Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAI Conference on Artificial Intelligence (2020)","DOI":"10.1609\/aaai.v34i04.6123"},{"key":"26_CR62","unstructured":"Xuhong, L., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning with convolutional networks. In: International Conference on Machine Learning (2018)"},{"key":"26_CR63","unstructured":"Yan, S., Song, H., Li, N., Zou, L., Ren, L.: Improve unsupervised domain adaptation with mixup training. arXiv preprint arXiv:2001.00677 (2020)"},{"key":"26_CR64","unstructured":"Yang, F.E., Cheng, Y.C., Shiau, Z.Y., Wang, Y.C.F.: Adversarial teacher-student representation learning for domain generalization. In: Neural Information Processing Systems (2021)"},{"key":"26_CR65","doi-asserted-by":"crossref","unstructured":"Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O.: Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the imagenet hierarchy. In: Conference on Fairness, Accountability, and Transparency (2020)","DOI":"10.1145\/3351095.3375709"},{"key":"26_CR66","unstructured":"Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning (2021)"},{"key":"26_CR67","unstructured":"Zhang, M., Marklund, H., Gupta, A., Levine, S., Finn, C.: Adaptive risk minimization: Learning to adapt to domain shift. In: Neural Information Processing Systems (2021)"},{"key":"26_CR68","unstructured":"Zhao, S., Gong, M., Liu, T., Fu, H., Tao, D.: Domain generalization via entropy regularization. In: Neural Information Processing Systems (2020)"},{"key":"26_CR69","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1007\/978-3-030-58517-4_33","volume-title":"Computer Vision \u2013 ECCV 2020","author":"K Zhou","year":"2020","unstructured":"Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561\u2013578. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58517-4_33"},{"key":"26_CR70","unstructured":"Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In: International Conference on Learning Representations (2021)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20050-2_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,27]],"date-time":"2022-10-27T22:28:49Z","timestamp":1666909729000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20050-2_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200496","9783031200502"],"references-count":70,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20050-2_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"28 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}