{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:46:04Z","timestamp":1726177564470},"publisher-location":"Cham","reference-count":40,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031200434"},{"type":"electronic","value":"9783031200441"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-20044-1_7","type":"book-chapter","created":{"date-parts":[[2022,10,19]],"date-time":"2022-10-19T19:11:54Z","timestamp":1666206714000},"page":"116-132","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Exploring Hierarchical Graph Representation for\u00a0Large-Scale Zero-Shot Image Classification"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0415-3584","authenticated-orcid":false,"given":"Kai","family":"Yi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6284-520X","authenticated-orcid":false,"given":"Xiaoqian","family":"Shen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1352-794X","authenticated-orcid":false,"given":"Yunhao","family":"Gou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9659-1551","authenticated-orcid":false,"given":"Mohamed","family":"Elhoseiny","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,20]]},"reference":[{"key":"7_CR1","doi-asserted-by":"crossref","unstructured":"Chen, S., et al.: Free: Feature refinement for generalized zero-shot learning. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 122\u2013131 (2021)","DOI":"10.1109\/ICCV48922.2021.00019"},{"key":"7_CR2","doi-asserted-by":"crossref","unstructured":"Cheng, R.: Data efficient language-supervised zero-shot recognition with optimal transport distillation (2021)","DOI":"10.1109\/CVPRW53098.2021.00348"},{"key":"7_CR3","doi-asserted-by":"publisher","unstructured":"Cox, M.A., Cox, T.F.: Multidimensional scaling. In: Handbook of data visualization, pp. 315\u2013347. Springer (2008). https:\/\/doi.org\/10.1007\/978-3-642-28753-4_101322","DOI":"10.1007\/978-3-642-28753-4_101322"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"7_CR5","doi-asserted-by":"crossref","unstructured":"Elhoseiny, M., Saleh, B., Elgammal, A.: Write a classifier: Zero-shot learning using purely textual descriptions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2584\u20132591 (2013)","DOI":"10.1109\/ICCV.2013.321"},{"key":"7_CR6","doi-asserted-by":"crossref","unstructured":"Elhoseiny, M., Zhu, Y., Zhang, H., Elgammal, A.: Link the head to the\" beak\": Zero shot learning from noisy text description at part precision. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6288\u20136297. IEEE (2017)","DOI":"10.1109\/CVPR.2017.666"},{"key":"7_CR7","unstructured":"Frome, A., et al.: Devise: A deep visual-semantic embedding model (2013)"},{"key":"7_CR8","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"7_CR9","unstructured":"Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. arXiv preprint arXiv:2102.05918 (2021)"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"Kampffmeyer, M., Chen, Y., Liang, X., Wang, H., Zhang, Y., Xing, E.P.: Rethinking knowledge graph propagation for zero-shot learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11487\u201311496 (2019)","DOI":"10.1109\/CVPR.2019.01175"},{"key":"7_CR11","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Liu, S., Chen, J., Pan, L., Ngo, C.W., Chua, T.S., Jiang, Y.G.: Hyperbolic visual embedding learning for zero-shot recognition. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9273\u20139281 (2020)","DOI":"10.1109\/CVPR42600.2020.00929"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Long, Y., Shao, L.: Describing unseen classes by exemplars: Zero-shot learning using grouped simile ensemble. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 907\u2013915. IEEE (2017)","DOI":"10.1109\/WACV.2017.106"},{"key":"7_CR14","unstructured":"Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)"},{"key":"7_CR15","unstructured":"Lu, Y.: Unsupervised learning on neural network outputs: with application in zero-shot learning. arXiv preprint arXiv:1506.00990 (2015)"},{"key":"7_CR16","unstructured":"Micikevicius., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)"},{"key":"7_CR17","unstructured":"Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111\u20133119 (2013)"},{"issue":"11","key":"7_CR18","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1145\/219717.219748","volume":"38","author":"GA Miller","year":"1995","unstructured":"Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39\u201341 (1995)","journal-title":"Commun. ACM"},{"key":"7_CR19","unstructured":"Nayak, N.V., Bach, S.H.: Zero-shot learning with common sense knowledge graphs. arXiv preprint arXiv:2006.10713 (2020)"},{"key":"7_CR20","unstructured":"Norouzi, M., et al.: Zero-shot learning by convex combination of semantic embeddings. arXiv preprint arXiv:1312.5650 (2013)"},{"key":"7_CR21","unstructured":"Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints pp. arXiv-1807 (2018)"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Patterson, G., Hays, J.: Sun attribute database: Discovering, annotating, and recognizing scene attributes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2751\u20132758. IEEE (2012)","DOI":"10.1109\/CVPR.2012.6247998"},{"key":"7_CR23","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"7_CR24","unstructured":"Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)"},{"key":"7_CR25","unstructured":"Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021)"},{"key":"7_CR26","doi-asserted-by":"crossref","unstructured":"Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (2016)","DOI":"10.18653\/v1\/P16-1162"},{"key":"7_CR27","unstructured":"Skorokhodov, I., Elhoseiny, M.: Class normalization for zero-shot learning. In: International Conference on Learning Representations (2021). https:\/\/openreview.net\/forum?id=7pgFL2Dkyyy"},{"key":"7_CR28","unstructured":"Sun, Q., Liu, Y., Chen, Z., Chua, T.S., Schiele, B.: Meta-transfer learning through hard tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2020)"},{"key":"7_CR29","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998\u20136008 (2017)"},{"key":"7_CR30","doi-asserted-by":"crossref","unstructured":"Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant cnns for digital pathology. CoRR (2018)","DOI":"10.1007\/978-3-030-00934-2_24"},{"key":"7_CR31","doi-asserted-by":"crossref","unstructured":"Wang, J., Jiang, B.: Zero-shot learning via contrastive learning on dual knowledge graphs. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 885\u2013892 (2021)","DOI":"10.1109\/ICCVW54120.2021.00104"},{"key":"7_CR32","doi-asserted-by":"crossref","unstructured":"Wang, X., Ye, Y., Gupta, A.: Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6857\u20136866 (2018)","DOI":"10.1109\/CVPR.2018.00717"},{"issue":"3","key":"7_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3386252","volume":"53","author":"Y Wang","year":"2020","unstructured":"Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1\u201334 (2020)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"7_CR34","unstructured":"Welinder, P., et al.: Caltech-ucsd birds 200 (2010)"},{"key":"7_CR35","doi-asserted-by":"crossref","unstructured":"Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. In: PAMI (2018)","DOI":"10.1109\/CVPR.2017.328"},{"key":"7_CR36","doi-asserted-by":"crossref","unstructured":"Xie, G.S., et al.: Attentive region embedding network for zero-shot learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9384\u20139393 (2019)","DOI":"10.1109\/CVPR.2019.00961"},{"issue":"6","key":"7_CR37","doi-asserted-by":"publisher","first-page":"1930","DOI":"10.1007\/s11263-020-01381-4","volume":"129","author":"HJ Ye","year":"2021","unstructured":"Ye, H.J., Hu, H., Zhan, D.C.: Learning adaptive classifiers synthesis for generalized few-shot learning. Int. J. Comput. Vision 129(6), 1930\u20131953 (2021)","journal-title":"Int. J. Comput. Vision"},{"key":"7_CR38","unstructured":"Yu, Y., Ji, Z., Fu, Y., Guo, J., Pang, Y., Zhang, Z.M.: Stacked semantics-guided attention model for fine-grained zero-shot learning. In: NeurIPS (2018)"},{"key":"7_CR39","doi-asserted-by":"crossref","unstructured":"Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: Few-shot image classification with differentiable earth mover\u2019s distance and structured classifiers. In 2020 IEEE CVF Conference on Computer Vision and Pattern Recognition, pp. 12200\u201312210 (2020)","DOI":"10.1109\/CVPR42600.2020.01222"},{"key":"7_CR40","unstructured":"Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. arXiv preprint arXiv:2109.01134 (2021)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-20044-1_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T15:46:22Z","timestamp":1710344782000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-20044-1_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031200434","9783031200441"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-20044-1_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}