{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:45:30Z","timestamp":1726177530060},"publisher-location":"Cham","reference-count":60,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031198410"},{"type":"electronic","value":"9783031198427"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19842-7_17","type":"book-chapter","created":{"date-parts":[[2022,10,22]],"date-time":"2022-10-22T12:12:59Z","timestamp":1666440779000},"page":"283-300","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["SLiDE: Self-supervised LiDAR De-snowing Through Reconstruction Difficulty"],"prefix":"10.1007","author":[{"given":"Gwangtak","family":"Bae","sequence":"first","affiliation":[]},{"given":"Byungjun","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Seongyong","family":"Ahn","sequence":"additional","affiliation":[]},{"given":"Jihong","family":"Min","sequence":"additional","affiliation":[]},{"given":"Inwook","family":"Shim","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,23]]},"reference":[{"key":"17_CR1","unstructured":"Batson, J., Royer, L.: Noise2self: blind denoising by self-supervision. In: International Conference on Machine Learning, pp. 524\u2013533 (2019)"},{"key":"17_CR2","unstructured":"Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"17_CR3","doi-asserted-by":"crossref","unstructured":"Bijelic, M., et al.: Seeing through fog without seeing fog: deep multimodal sensor fusion in unseen adverse weather. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11682\u201311692 (2020)","DOI":"10.1109\/CVPR42600.2020.01170"},{"key":"17_CR4","doi-asserted-by":"crossref","unstructured":"Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11621\u201311631 (2020)","DOI":"10.1109\/CVPR42600.2020.01164"},{"key":"17_CR5","doi-asserted-by":"crossref","unstructured":"Charron, N., Phillips, S., Waslander, S.L.: De-noising of LiDAR point clouds corrupted by snowfall. In: Conference on Computer and Robot Vision, pp. 254\u2013261 (2018)","DOI":"10.1109\/CRV.2018.00043"},{"key":"17_CR6","doi-asserted-by":"crossref","unstructured":"Chen, X., He, K.: Exploring simple siamese representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 15750\u201315758 (2021)","DOI":"10.1109\/CVPR46437.2021.01549"},{"key":"17_CR7","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"key":"17_CR8","doi-asserted-by":"crossref","unstructured":"Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: IEEE International Conference on Computer Vision, pp. 1422\u20131430 (2015)","DOI":"10.1109\/ICCV.2015.167"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: RangeDet: in defense of range view for LiDAR-based 3D object detection. In: IEEE International Conference on Computer Vision, pp. 2918\u20132927 (2021)","DOI":"10.1109\/ICCV48922.2021.00291"},{"key":"17_CR10","doi-asserted-by":"crossref","unstructured":"Gao, B., Pan, Y., Li, C., Geng, S., Zhao, H.: Are we hungry for 3D LiDAR data for semantic segmentation? A survey of datasets and methods. IEEE Trans. Intell. Transp. Syst. (2021)","DOI":"10.1109\/TITS.2021.3076844"},{"key":"17_CR11","doi-asserted-by":"crossref","unstructured":"Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354\u20133361 (2012)","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"17_CR12","unstructured":"Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)"},{"key":"17_CR13","unstructured":"Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271\u201321284 (2020)"},{"key":"17_CR14","doi-asserted-by":"crossref","unstructured":"Gruber, T., Bijelic, M., Heide, F., Ritter, W., Dietmayer, K.: Pixel-accurate depth evaluation in realistic driving scenarios. In: International Conference on 3D Vision, pp. 95\u2013105. IEEE (2019)","DOI":"10.1109\/3DV.2019.00020"},{"key":"17_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"issue":"2","key":"17_CR16","doi-asserted-by":"publisher","first-page":"2514","DOI":"10.1109\/LRA.2020.2972865","volume":"5","author":"R Heinzler","year":"2020","unstructured":"Heinzler, R., Piewak, F., Schindler, P., Stork, W.: CNN-based LiDAR point cloud de-noising in adverse weather. IEEE Robot. Autom. Lett. 5(2), 2514\u20132521 (2020)","journal-title":"IEEE Robot. Autom. Lett."},{"key":"17_CR17","unstructured":"Hermosilla, P., Ritschel, T., Ropinski, T.: Total denoising: Unsupervised learning of 3D point cloud cleaning. In: IEEE International Conference on Computer Vision, pp. 52\u201360 (2019)"},{"key":"17_CR18","doi-asserted-by":"crossref","unstructured":"Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5070\u20135079 (2019)","DOI":"10.1109\/CVPR.2019.00521"},{"key":"17_CR19","doi-asserted-by":"crossref","unstructured":"Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: IEEE International Conference on Computer Vision, pp. 2146\u20132153. IEEE (2009)","DOI":"10.1109\/ICCV.2009.5459469"},{"key":"17_CR20","doi-asserted-by":"crossref","unstructured":"Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W.: Dual student: breaking the limits of the teacher in semi-supervised learning. In: IEEE International Conference on Computer Vision, pp. 6728\u20136736 (2019)","DOI":"10.1109\/ICCV.2019.00683"},{"key":"17_CR21","unstructured":"Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5580\u20135590 (2017)"},{"key":"17_CR22","unstructured":"Kilic, V., et al.: LiDAR light scattering augmentation (LISA): physics-based simulation of adverse weather conditions for 3D object detection. arXiv preprint arXiv:2107.07004 (2021)"},{"key":"17_CR23","unstructured":"Kim, K., Ye, J.C.: Noise2score: tweedie\u2019s approach to self-supervised image denoising without clean images. In: Advances in Neural Information Processing Systems, vol. 34 (2021)"},{"key":"17_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"713","DOI":"10.1007\/978-3-030-01249-6_43","volume-title":"Computer Vision \u2013 ECCV 2018","author":"M Klodt","year":"2018","unstructured":"Klodt, M., Vedaldi, A.: Supervising the new with the old: learning SFM from SFM. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 713\u2013728. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01249-6_43"},{"key":"17_CR25","doi-asserted-by":"crossref","unstructured":"Krull, A., Buchholz, T.O., Jug, F.: Noise2Void-learning denoising from single noisy images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129\u20132137 (2019)","DOI":"10.1109\/CVPR.2019.00223"},{"key":"17_CR26","unstructured":"Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)"},{"key":"17_CR27","doi-asserted-by":"crossref","unstructured":"Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4558\u20134567 (2018)","DOI":"10.1109\/CVPR.2018.00479"},{"key":"17_CR28","doi-asserted-by":"crossref","unstructured":"Le, Q.V.: Building high-level features using large scale unsupervised learning. In: International Conference on Acoustics, Speech and Signal Processing, pp. 8595\u20138598. IEEE (2013)","DOI":"10.1109\/ICASSP.2013.6639343"},{"key":"17_CR29","unstructured":"Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)"},{"key":"17_CR30","unstructured":"Lee, S., Prakash, S.P.S., Cogswell, M., Ranjan, V., Crandall, D., Batra, D.: Stochastic multiple choice learning for training diverse deep ensembles. In: Advances in Neural Information Processing Systems, pp. 2119\u20132127 (2016)"},{"key":"17_CR31","unstructured":"Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. In: International Conference on Machine Learning, pp. 2965\u20132974 (2018)"},{"issue":"5","key":"17_CR32","doi-asserted-by":"publisher","first-page":"1286","DOI":"10.1109\/TITS.2015.2499196","volume":"17","author":"H Luo","year":"2015","unstructured":"Luo, H., et al.: Patch-based semantic labeling of road scene using colorized mobile LiDAR point clouds. IEEE Trans. Intell. Transp. Syst. 17(5), 1286\u20131297 (2015)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"7","key":"17_CR33","doi-asserted-by":"publisher","first-page":"3631","DOI":"10.1109\/TGRS.2018.2802935","volume":"56","author":"H Luo","year":"2018","unstructured":"Luo, H., et al.: Semantic labeling of mobile LiDAR point clouds via active learning and higher order MRF. IEEE Trans. Geosci. Remote Sens. 56(7), 3631\u20133644 (2018)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"17_CR34","doi-asserted-by":"crossref","unstructured":"Luo, S., Hu, W.: Differentiable manifold reconstruction for point cloud denoising. In: ACM International Conference on Multimedia, pp. 1330\u20131338 (2020)","DOI":"10.1145\/3394171.3413727"},{"key":"17_CR35","doi-asserted-by":"crossref","unstructured":"Luo, S., Hu, W.: Score-based point cloud denoising. In: IEEE International Conference on Computer Vision, pp. 4583\u20134592 (2021)","DOI":"10.1109\/ICCV48922.2021.00454"},{"key":"17_CR36","doi-asserted-by":"crossref","unstructured":"Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8896\u20138905 (2018)","DOI":"10.1109\/CVPR.2018.00927"},{"key":"17_CR37","doi-asserted-by":"crossref","unstructured":"Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 12677\u201312686 (2019)","DOI":"10.1109\/CVPR.2019.01296"},{"key":"17_CR38","doi-asserted-by":"crossref","unstructured":"Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate LiDAR semantic segmentation. In: IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 4213\u20134220. IEEE (2019)","DOI":"10.1109\/IROS40897.2019.8967762"},{"key":"17_CR39","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/978-3-319-46466-4_5","volume-title":"Computer Vision \u2013 ECCV 2016","author":"M Noroozi","year":"2016","unstructured":"Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69\u201384. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46466-4_5"},{"key":"17_CR40","doi-asserted-by":"publisher","first-page":"160202","DOI":"10.1109\/ACCESS.2020.3020266","volume":"8","author":"JI Park","year":"2020","unstructured":"Park, J.I., Park, J., Kim, K.S.: Fast and accurate desnowing algorithm for LiDAR point clouds. IEEE Access 8, 160202\u2013160212 (2020)","journal-title":"IEEE Access"},{"key":"17_CR41","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"497","DOI":"10.1007\/978-3-030-11024-6_39","volume-title":"Computer Vision \u2013 ECCV 2018 Workshops","author":"F Piewak","year":"2019","unstructured":"Piewak, F., et al.: Boosting LiDAR-based semantic labeling by cross-modal training data generation. In: Leal-Taix\u00e9, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 497\u2013513. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-11024-6_39"},{"key":"17_CR42","unstructured":"Pitropov, M., et al.: Canadian adverse driving conditions dataset. Int. J. Robot. Res. (2020)"},{"key":"17_CR43","unstructured":"Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 652\u2013660 (2017)"},{"key":"17_CR44","unstructured":"Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"17_CR45","doi-asserted-by":"crossref","unstructured":"Quan, Y., Chen, M., Pang, T., Ji, H.: Self2self with dropout: learning self-supervised denoising from single image. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1890\u20131898 (2020)","DOI":"10.1109\/CVPR42600.2020.00196"},{"key":"17_CR46","doi-asserted-by":"crossref","unstructured":"Roriz, R., Campos, A., Pinto, S., Gomes, T.: DIOR: a hardware-assisted weather denoising solution for LiDAR point clouds. IEEE Sens. J. (2021)","DOI":"10.1109\/JSEN.2021.3133873"},{"key":"17_CR47","doi-asserted-by":"crossref","unstructured":"Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation, pp. 1\u20134 (2011)","DOI":"10.1109\/ICRA.2011.5980567"},{"key":"17_CR48","unstructured":"Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"17_CR49","doi-asserted-by":"crossref","unstructured":"Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013779 (2019)","DOI":"10.1109\/CVPR.2019.00086"},{"key":"17_CR50","doi-asserted-by":"crossref","unstructured":"Shim, I., et al.: Vision system and depth processing for DRC-HUBO+. In: IEEE International Conference on Robotics and Automation, pp. 2456\u20132463 (2016)","DOI":"10.1109\/ICRA.2016.7487398"},{"key":"17_CR51","unstructured":"Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, vol. 33, pp. 596\u2013608 (2020)"},{"key":"17_CR52","doi-asserted-by":"crossref","unstructured":"Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2446\u20132454 (2020)","DOI":"10.1109\/CVPR42600.2020.00252"},{"key":"17_CR53","unstructured":"Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"issue":"2","key":"17_CR54","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1007\/s10994-019-05855-6","volume":"109","author":"JE Van Engelen","year":"2020","unstructured":"Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373\u2013440 (2020)","journal-title":"Mach. Learn."},{"key":"17_CR55","doi-asserted-by":"crossref","unstructured":"Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10687\u201310698 (2020)","DOI":"10.1109\/CVPR42600.2020.01070"},{"key":"17_CR56","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"574","DOI":"10.1007\/978-3-030-58580-8_34","volume-title":"Computer Vision \u2013 ECCV 2020","author":"S Xie","year":"2020","unstructured":"Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574\u2013591. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58580-8_34"},{"key":"17_CR57","doi-asserted-by":"crossref","unstructured":"Yang, G., Hu, P., Ramanan, D.: Inferring distributions over depth from a single image. In: IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 6090\u20136096 (2019)","DOI":"10.1109\/IROS40897.2019.8968065"},{"key":"17_CR58","doi-asserted-by":"crossref","unstructured":"Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., Yu, N.: DUP-Net: denoiser and upsampler network for 3D adversarial point clouds defense. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1961\u20131970 (2019)","DOI":"10.1109\/ICCV.2019.00205"},{"key":"17_CR59","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490\u20134499 (2018)","DOI":"10.1109\/CVPR.2018.00472"},{"key":"17_CR60","unstructured":"Zoph, B., et al.: Rethinking pre-training and self-training. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3833\u20133845 (2020)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19842-7_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T19:03:37Z","timestamp":1710356617000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19842-7_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031198410","9783031198427"],"references-count":60,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19842-7_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"23 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}