{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:29:51Z","timestamp":1727065791149},"publisher-location":"Cham","reference-count":50,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031198267"},{"type":"electronic","value":"9783031198274"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19827-4_10","type":"book-chapter","created":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T14:42:19Z","timestamp":1667313739000},"page":"159-175","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":34,"title":["Deforming Radiance Fields with\u00a0Cages"],"prefix":"10.1007","author":[{"given":"Tianhan","family":"Xu","sequence":"first","affiliation":[]},{"given":"Tatsuya","family":"Harada","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,2]]},"reference":[{"key":"10_CR1","doi-asserted-by":"crossref","unstructured":"Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 5855\u20135864 (2021)","DOI":"10.1109\/ICCV48922.2021.00580"},{"key":"10_CR2","doi-asserted-by":"crossref","unstructured":"Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: European Conference on Computer Vision (2022)","DOI":"10.1007\/978-3-031-19824-3_20"},{"key":"10_CR3","unstructured":"Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http:\/\/www.blender.org"},{"key":"10_CR4","doi-asserted-by":"crossref","unstructured":"Davis, A., Levoy, M., Durand, F.: Unstructured light fields. In: Computer Graphics Forum, vol. 31, pp. 305\u2013314. Wiley Online Library (2012)","DOI":"10.1111\/j.1467-8659.2012.03009.x"},{"key":"10_CR5","unstructured":"DeRose, T., Meyer, M.: Harmonic coordinates. In: Pixar Technical Memo 06\u201302. Pixar Animation Studios (2006)"},{"key":"10_CR6","doi-asserted-by":"crossref","unstructured":"Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605\u2013613 (2017)","DOI":"10.1109\/CVPR.2017.264"},{"key":"10_CR7","doi-asserted-by":"crossref","unstructured":"Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20, 19\u201327 (2003)","DOI":"10.1016\/S0167-8396(03)00002-5"},{"key":"10_CR8","doi-asserted-by":"crossref","unstructured":"Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501\u20135510 (2022)","DOI":"10.1109\/CVPR52688.2022.00542"},{"key":"10_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1007\/978-3-319-46466-4_29","volume-title":"Computer Vision \u2013 ECCV 2016","author":"R Girdhar","year":"2016","unstructured":"Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484\u2013499. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46466-4_29"},{"key":"10_CR10","doi-asserted-by":"crossref","unstructured":"Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The Lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43\u201354 (1996)","DOI":"10.1145\/237170.237200"},{"key":"10_CR11","doi-asserted-by":"crossref","unstructured":"Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. Comput. Vis. Media 7, 187\u2013199 (2021)","DOI":"10.1007\/s41095-021-0229-5"},{"key":"10_CR12","unstructured":"Guo, M., Fathi, A., Wu, J., Funkhouser, T.: Object-centric neural scene rendering. arXiv preprint arXiv:2012.08503 (2020)"},{"key":"10_CR13","doi-asserted-by":"crossref","unstructured":"Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)","DOI":"10.1017\/CBO9780511811685"},{"key":"10_CR14","doi-asserted-by":"crossref","unstructured":"Jakab, T., Tucker, R., Makadia, A., Wu, J., Snavely, N., Kanazawa, A.: KeypointDeformer: unsupervised 3d Keypoint discovery for shape control. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12783\u201312792 (2021)","DOI":"10.1109\/CVPR46437.2021.01259"},{"key":"10_CR15","doi-asserted-by":"crossref","unstructured":"Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aan\u00e6s, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406\u2013413 (2014)","DOI":"10.1109\/CVPR.2014.59"},{"key":"10_CR16","unstructured":"Jiakai, Z., et al.: Editable free-viewpoint video using a layered neural representation. In: ACM SIGGRAPH (2021)"},{"key":"10_CR17","doi-asserted-by":"crossref","unstructured":"Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. (TOG) 26, 71-es (2007)","DOI":"10.1145\/1276377.1276466"},{"key":"10_CR18","doi-asserted-by":"crossref","unstructured":"Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. In: ACM SIGGRAPH 2005 Papers, pp. 561\u2013566 (2005)","DOI":"10.1145\/1073204.1073229"},{"key":"10_CR19","doi-asserted-by":"crossref","unstructured":"Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18, 165\u2013174 (1984)","DOI":"10.1145\/964965.808594"},{"key":"10_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"386","DOI":"10.1007\/978-3-030-01267-0_23","volume-title":"Computer Vision \u2013 ECCV 2018","author":"A Kanazawa","year":"2018","unstructured":"Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 386\u2013402. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01267-0_23"},{"key":"10_CR21","doi-asserted-by":"crossref","unstructured":"Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907\u20133916 (2018)","DOI":"10.1109\/CVPR.2018.00411"},{"key":"10_CR22","doi-asserted-by":"crossref","unstructured":"Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. (TOG) 27, 1\u201310 (2008)","DOI":"10.1145\/1360612.1360677"},{"key":"10_CR23","unstructured":"Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: Advances in Neural Information Processing Systems, vol. 33, pp. 15651\u201315663 (2020)"},{"key":"10_CR24","doi-asserted-by":"crossref","unstructured":"Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. (ACM SIGGRAPH Asia) 40, 1\u201316 (2021)","DOI":"10.1145\/3478513.3480528"},{"key":"10_CR25","doi-asserted-by":"crossref","unstructured":"Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance fields. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 5773\u20135783 (2021)","DOI":"10.1109\/ICCV48922.2021.00572"},{"key":"10_CR26","doi-asserted-by":"crossref","unstructured":"Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21, 163\u2013169 (1987)","DOI":"10.1145\/37402.37422"},{"key":"10_CR27","doi-asserted-by":"crossref","unstructured":"Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 16190\u201316199 (2022)","DOI":"10.1109\/CVPR52688.2022.01571"},{"key":"10_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1007\/978-3-030-58452-8_24","volume-title":"Computer Vision \u2013 ECCV 2020","author":"B Mildenhall","year":"2020","unstructured":"Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405\u2013421. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_24"},{"key":"10_CR29","doi-asserted-by":"crossref","unstructured":"M\u00fcller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph 41, 1\u201315 (2022)","DOI":"10.1145\/3528223.3530127"},{"key":"10_CR30","doi-asserted-by":"crossref","unstructured":"Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504\u20133515 (2020)","DOI":"10.1109\/CVPR42600.2020.00356"},{"key":"10_CR31","doi-asserted-by":"publisher","unstructured":"Nieto, J.R., Sus\u00edn, A.: Cage based deformations: a survey. In: Gonz\u00e1lez Hidalgo, M., Mir Torres, A., Varona G\u00f3mez, J. (eds.) Deformation Models, vol. 7, pp. 75\u201399. Springer, Dordrecht (2013). https:\/\/doi.org\/10.1007\/978-94-007-5446-1_3","DOI":"10.1007\/978-94-007-5446-1_3"},{"key":"10_CR32","doi-asserted-by":"crossref","unstructured":"Noguchi, A., Iqbal, U., Tremblay, J., Harada, T., Gallo, O.: Watch it move: unsupervised discovery of 3d joints for re-posing of articulated objects. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3677\u20133687 (2022)","DOI":"10.1109\/CVPR52688.2022.00366"},{"key":"10_CR33","doi-asserted-by":"crossref","unstructured":"Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 5762\u20135772 (2021)","DOI":"10.1109\/ICCV48922.2021.00571"},{"key":"10_CR34","doi-asserted-by":"crossref","unstructured":"Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for dynamic scenes. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2856\u20132865 (2021)","DOI":"10.1109\/CVPR46437.2021.00288"},{"key":"10_CR35","doi-asserted-by":"crossref","unstructured":"Park, K., et al.: Nerfies: deformable neural radiance fields. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 5865\u20135874 (2021)","DOI":"10.1109\/ICCV48922.2021.00581"},{"key":"10_CR36","doi-asserted-by":"crossref","unstructured":"Park, K., et al.: HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans. Graph 40, 1\u201312 (2021)","DOI":"10.1145\/3478513.3480487"},{"key":"10_CR37","doi-asserted-by":"crossref","unstructured":"Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 14314\u201314323 (2021)","DOI":"10.1109\/ICCV48922.2021.01405"},{"key":"10_CR38","doi-asserted-by":"crossref","unstructured":"Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054\u20139063 (2021)","DOI":"10.1109\/CVPR46437.2021.00894"},{"key":"10_CR39","doi-asserted-by":"crossref","unstructured":"Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318\u201310327 (2021)","DOI":"10.1109\/CVPR46437.2021.01018"},{"key":"10_CR40","unstructured":"Sitzmann, V., Zollh\u00f6fer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"10_CR41","unstructured":"Su, S.Y., Yu, F., Zollh\u00f6fer, M., Rhodin, H.: A-NeRF: articulated neural radiance fields for learning human shape, appearance, and pose. In: Advances in Neural Information Processing Systems, vol. 34, 12278\u201312291 (2021)"},{"key":"10_CR42","doi-asserted-by":"crossref","unstructured":"Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459\u20135469 (2022)","DOI":"10.1109\/CVPR52688.2022.00538"},{"key":"10_CR43","doi-asserted-by":"crossref","unstructured":"Tretschk, E., Tewari, A., Golyanik, V., Zollh\u00f6fer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 12959\u201312970 (2021)","DOI":"10.1109\/ICCV48922.2021.01272"},{"key":"10_CR44","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"298","DOI":"10.1007\/3-540-44480-7_21","volume-title":"Vision Algorithms: Theory and Practice","author":"B Triggs","year":"2000","unstructured":"Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment\u2014a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298\u2013372. Springer, Heidelberg (2000). https:\/\/doi.org\/10.1007\/3-540-44480-7_21"},{"key":"10_CR45","unstructured":"Xian, C., Lin, H., Gao, S.: Automatic generation of coarse bounding cages from dense meshes. In: IEEE International Conference on Shape Modeling and Applications (2009)"},{"key":"10_CR46","doi-asserted-by":"crossref","unstructured":"Xu, T., Fujita, Y., Matsumoto, E.: Surface-aligned neural radiance fields for controllable 3D human synthesis. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 15883\u201315892 (2022)","DOI":"10.1109\/CVPR52688.2022.01542"},{"key":"10_CR47","unstructured":"Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"10_CR48","doi-asserted-by":"crossref","unstructured":"Yang, B., et al.: Learning object-compositional neural radiance field for editable scene rendering. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 13779\u201313788 (2021)","DOI":"10.1109\/ICCV48922.2021.01352"},{"key":"10_CR49","doi-asserted-by":"crossref","unstructured":"Yifan, W., Aigerman, N., Kim, V.G., Chaudhuri, S., Sorkine-Hornung, O.: Neural cages for detail-preserving 3D deformations. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 75\u201383 (2020)","DOI":"10.1109\/CVPR42600.2020.00015"},{"key":"10_CR50","doi-asserted-by":"crossref","unstructured":"Yuan, Y.J., Sun, Y.T., Lai, Y.K., Ma, Y., Jia, R., Gao, L.: NeRF-Editing: geometry editing of neural radiance fields. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 18353\u201318364 (2022)","DOI":"10.1109\/CVPR52688.2022.01781"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19827-4_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,10]],"date-time":"2023-03-10T22:18:29Z","timestamp":1678486709000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19827-4_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031198267","9783031198274"],"references-count":50,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19827-4_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"2 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}