{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:24:34Z","timestamp":1726763074690},"publisher-location":"Cham","reference-count":68,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031198205"},{"type":"electronic","value":"9783031198212"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19821-2_4","type":"book-chapter","created":{"date-parts":[[2022,10,22]],"date-time":"2022-10-22T08:12:59Z","timestamp":1666426379000},"page":"59-77","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["CA-SSL: Class-Agnostic Semi-Supervised Learning for\u00a0Detection and\u00a0Segmentation"],"prefix":"10.1007","author":[{"given":"Lu","family":"Qi","sequence":"first","affiliation":[]},{"given":"Jason","family":"Kuen","sequence":"additional","affiliation":[]},{"given":"Zhe","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Jiuxiang","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Fengyun","family":"Rao","sequence":"additional","affiliation":[]},{"given":"Dian","family":"Li","sequence":"additional","affiliation":[]},{"given":"Weidong","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Zhen","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Ming-Hsuan","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Jiaya","family":"Jia","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,23]]},"reference":[{"key":"4_CR1","unstructured":"Berthelot, D., et al.: MixMatch: a holistic approach to semi-supervised learning. In: NeurlPS (2019)"},{"key":"4_CR2","unstructured":"et al, R.: Not all unlabeled data are equal: learning to weight data in semi-supervised learning. In: NeurlPS (2020)"},{"key":"4_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1007\/978-3-030-58452-8_13","volume-title":"Computer Vision \u2013 ECCV 2020","author":"N Carion","year":"2020","unstructured":"Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213\u2013229. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_13"},{"key":"4_CR4","doi-asserted-by":"crossref","unstructured":"Chen, K., et al.: Hybrid task cascade for instance segmentation. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00511"},{"key":"4_CR5","unstructured":"Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark (2019)"},{"key":"4_CR6","unstructured":"Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv (2020)"},{"key":"4_CR7","doi-asserted-by":"crossref","unstructured":"Chen, X., Girshick, R., He, K., Doll\u00e1r, P.: Tensormask: A foundation for dense object segmentation. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00215"},{"key":"4_CR8","doi-asserted-by":"crossref","unstructured":"Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.01549"},{"key":"4_CR9","doi-asserted-by":"crossref","unstructured":"Chen, Y., et al.: Scale-aware automatic augmentation for object detection. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00944"},{"key":"4_CR10","unstructured":"Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: NeurlPS (2021)"},{"key":"4_CR11","doi-asserted-by":"crossref","unstructured":"Chu, R., Sun, Y., Li, Y., Liu, Z., Zhang, C., Wei, Y.: Vehicle re-identification with viewpoint-aware metric learning. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00837"},{"key":"4_CR12","doi-asserted-by":"crossref","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.350"},{"key":"4_CR13","unstructured":"Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NeurIPS (2016)"},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00165"},{"key":"4_CR15","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"4_CR16","doi-asserted-by":"publisher","first-page":"1558","DOI":"10.1109\/TPAMI.2014.2377715","volume":"37","author":"P Doll\u00e1r","year":"2015","unstructured":"Doll\u00e1r, P., Zitnick, C.L.: Fast edge detection using structured forests. PAMI 37, 1558\u20131570 (2015)","journal-title":"PAMI"},{"key":"4_CR17","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"4_CR18","doi-asserted-by":"crossref","unstructured":"He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"4_CR19","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.B.: Mask R-CNN. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"4_CR20","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"4_CR21","doi-asserted-by":"crossref","unstructured":"H\u00e9naff, O.J., Koppula, S., Alayrac, J.B., van den Oord, A., Vinyals, O., Carreira, J.: Efficient visual pretraining with contrastive detection. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00993"},{"key":"4_CR22","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"4_CR23","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"4_CR24","unstructured":"Jeong, J., Lee, S., Kim, J., Kwak, N.: Consistency-based semi-supervised learning for object detection (2019)"},{"key":"4_CR25","doi-asserted-by":"crossref","unstructured":"Kim, D., Lin, T.Y., Angelova, A., Kweon, I.S., Kuo, W.: Learning open-world object proposals without learning to classify. arXiv (2021)","DOI":"10.1109\/LRA.2022.3146922"},{"key":"4_CR26","doi-asserted-by":"crossref","unstructured":"Kirillov, A., Girshick, R., He, K., Doll\u00e1r, P.: Panoptic feature pyramid networks. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00656"},{"key":"4_CR27","unstructured":"Krasin, I., et al.: OpenImages: a public dataset for large-scale multi-label and multi-class image classification. Dataset (2016). http:\/\/github.com\/openimages"},{"key":"4_CR28","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)"},{"key":"4_CR29","doi-asserted-by":"publisher","first-page":"1956","DOI":"10.1007\/s11263-020-01316-z","volume":"128","author":"A Kuznetsova","year":"2020","unstructured":"Kuznetsova, A., et al.: The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. IJCV 128, 1956\u20131981 (2020). https:\/\/doi.org\/10.1007\/s11263-020-01316-z","journal-title":"IJCV"},{"key":"4_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"589","DOI":"10.1007\/978-3-030-58526-6_35","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Li","year":"2020","unstructured":"Li, Y., Huang, D., Qin, D., Wang, L., Gong, B.: Improving object detection with Selective self-supervised self-training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 589\u2013607. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58526-6_35"},{"key":"4_CR31","doi-asserted-by":"crossref","unstructured":"Li, Y., et al.: Fully convolutional networks for panoptic segmentation with point-based supervision. arXiv (2021)","DOI":"10.1109\/CVPR46437.2021.00028"},{"key":"4_CR32","doi-asserted-by":"crossref","unstructured":"Lin, T., Doll\u00e1r, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"4_CR33","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"4_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"4_CR35","doi-asserted-by":"crossref","unstructured":"Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00913"},{"key":"4_CR36","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"4_CR37","doi-asserted-by":"crossref","unstructured":"Morrison, D., et al.: Cartman: the low-cost cartesian manipulator that won the amazon robotics challenge. In: ICRA (2018)","DOI":"10.1109\/ICRA.2018.8463191"},{"key":"4_CR38","doi-asserted-by":"crossref","unstructured":"Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: CVPR (2014)","DOI":"10.1109\/CVPR.2014.119"},{"key":"4_CR39","doi-asserted-by":"crossref","unstructured":"Qi, L., Jiang, L., Liu, S., Shen, X., Jia, J.: Amodal instance segmentation with KINS dataset. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00313"},{"key":"4_CR40","doi-asserted-by":"crossref","unstructured":"Qi, L., et al.: Multi-scale aligned distillation for low-resolution detection. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.01421"},{"key":"4_CR41","doi-asserted-by":"crossref","unstructured":"Qi, L., et al.: Open-world entity segmentation. arXiv (2021)","DOI":"10.1109\/TPAMI.2022.3227513"},{"key":"4_CR42","doi-asserted-by":"crossref","unstructured":"Qi, L., Zhang, X., Chen, Y., Chen, Y., Sun, J., Jia, J.: PointINS: point-based instance segmentation. arXiv (2020)","DOI":"10.1109\/TPAMI.2021.3085295"},{"key":"4_CR43","doi-asserted-by":"crossref","unstructured":"Radosavovic, I., Doll\u00e1r, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: towards omni-supervised learning. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00433"},{"key":"4_CR44","doi-asserted-by":"crossref","unstructured":"Ramanathan, V., Wang, R., Mahajan, D.: PreDet: large-scale weakly supervised pre-training for detection. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00286"},{"key":"4_CR45","unstructured":"Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)"},{"key":"4_CR46","doi-asserted-by":"crossref","unstructured":"Sharma, A., Khan, N., Mubashar, M., Sundaramoorthi, G., Torr, P.: Class-agnostic segmentation loss and its application to salient object detection and segmentation. In: ICCV (2021)","DOI":"10.1109\/ICCVW54120.2021.00187"},{"key":"4_CR47","unstructured":"Shu, G.: Human detection, tracking and segmentation in surveillance video (2014)"},{"key":"4_CR48","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)"},{"key":"4_CR49","unstructured":"Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv (2020)"},{"key":"4_CR50","doi-asserted-by":"crossref","unstructured":"Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00584"},{"key":"4_CR51","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv (2016)","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"4_CR52","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"4_CR53","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.308"},{"key":"4_CR54","doi-asserted-by":"crossref","unstructured":"Tang, P., Ramaiah, C., Wang, Y., Xu, R., Xiong, C.: Proposal learning for semi-supervised object detection. In: WACV (2021)","DOI":"10.1109\/WACV48630.2021.00234"},{"key":"4_CR55","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"282","DOI":"10.1007\/978-3-030-58452-8_17","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Tian","year":"2020","unstructured":"Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 282\u2013298. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_17"},{"key":"4_CR56","doi-asserted-by":"crossref","unstructured":"Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00972"},{"key":"4_CR57","doi-asserted-by":"crossref","unstructured":"Wang, K., Yan, X., Zhang, D., Zhang, L., Lin, L.: Towards human-machine cooperation: self-supervised sample mining for object detection. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00173"},{"key":"4_CR58","doi-asserted-by":"crossref","unstructured":"Wang, W., Feiszli, M., Wang, H., Tran, D.: Unidentified video objects: a benchmark for dense, open-world segmentation. arXiv (2021)","DOI":"10.1109\/ICCV48922.2021.01060"},{"key":"4_CR59","doi-asserted-by":"crossref","unstructured":"Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00304"},{"key":"4_CR60","unstructured":"Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). http:\/\/github.com\/facebookresearch\/detectron2"},{"key":"4_CR61","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"472","DOI":"10.1007\/978-3-030-01231-1_29","volume-title":"Computer Vision \u2013 ECCV 2018","author":"B Xiao","year":"2018","unstructured":"Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472\u2013487. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01231-1_29"},{"key":"4_CR62","doi-asserted-by":"crossref","unstructured":"Xie, E., et al.: DetCo: unsupervised contrastive learning for object detection. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00828"},{"key":"4_CR63","doi-asserted-by":"crossref","unstructured":"Xie, E., et al.: PolarMask: single shot instance segmentation with polar representation. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.01221"},{"key":"4_CR64","doi-asserted-by":"crossref","unstructured":"Xu, M., et al.: End-to-end semi-supervised object detection with soft teacher. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00305"},{"key":"4_CR65","doi-asserted-by":"crossref","unstructured":"Zhang, R., Tian, Z., Shen, C., You, M., Yan, Y.: Mask encoding for single shot instance segmentation. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.01024"},{"key":"4_CR66","doi-asserted-by":"publisher","first-page":"1452","DOI":"10.1109\/TPAMI.2017.2723009","volume":"40","author":"B Zhou","year":"2017","unstructured":"Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. TPAMI 40, 1452\u20131464 (2017)","journal-title":"TPAMI"},{"key":"4_CR67","unstructured":"Zhou, X., Wang, D., Kr\u00e4henb\u00fchl, P.: Objects as points (2019)"},{"key":"4_CR68","unstructured":"Zoph, B., et al.: Rethinking pre-training and self-training. In: NeurIPS (2020)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19821-2_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,9]],"date-time":"2023-03-09T10:39:16Z","timestamp":1678358356000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19821-2_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031198205","9783031198212"],"references-count":68,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19821-2_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"23 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}