{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T22:17:14Z","timestamp":1726179434506},"publisher-location":"Cham","reference-count":44,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031197994"},{"type":"electronic","value":"9783031198007"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19800-7_35","type":"book-chapter","created":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T12:09:38Z","timestamp":1667909378000},"page":"599-615","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Animation from\u00a0Blur: Multi-modal Blur Decomposition with\u00a0Motion Guidance"],"prefix":"10.1007","author":[{"given":"Zhihang","family":"Zhong","sequence":"first","affiliation":[]},{"given":"Xiao","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Zhirong","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Yinqiang","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Stephen","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Imari","family":"Sato","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,9]]},"reference":[{"key":"35_CR1","doi-asserted-by":"crossref","unstructured":"Argaw, D.M., Kim, J., Rameau, F., Kweon, I.S.: Motion-blurred video interpolation and extrapolation. In: AAAI Conference on Artificial Intelligence (2021)","DOI":"10.1609\/aaai.v35i2.16173"},{"key":"35_CR2","doi-asserted-by":"crossref","unstructured":"Argaw, D.M., Kim, J., Rameau, F., Zhang, C., Kweon, I.S.: Restoration of video frames from a single blurred image with motion understanding. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 701\u2013710 (2021)","DOI":"10.1109\/CVPRW53098.2021.00079"},{"issue":"3","key":"35_CR3","doi-asserted-by":"publisher","first-page":"370","DOI":"10.1109\/83.661187","volume":"7","author":"TF Chan","year":"1998","unstructured":"Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370\u2013375 (1998)","journal-title":"IEEE Trans. Image Process."},{"key":"35_CR4","unstructured":"Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. pp. 2180\u20132188 (2016)"},{"key":"35_CR5","doi-asserted-by":"crossref","unstructured":"Endo, Y., Kanamori, Y., Kuriyama, S.: Animating landscape: self-supervised learning of decoupled motion and appearance for single-image video synthesis. arXiv preprint arXiv:1910.07192 (2019)","DOI":"10.1145\/3355089.3356523"},{"key":"35_CR6","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)"},{"key":"35_CR7","doi-asserted-by":"crossref","unstructured":"Holynski, A., Curless, B.L., Seitz, S.M., Szeliski, R.: Animating pictures with Eulerian motion fields. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5810\u20135819 (2021)","DOI":"10.1109\/CVPR46437.2021.00575"},{"key":"35_CR8","unstructured":"Huang, Z., Zhang, T., Heng, W., Shi, B., Zhou, S.: Rife: real-time intermediate flow estimation for video frame interpolation. arXiv preprint arXiv:2011.06294 (2020)"},{"key":"35_CR9","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125\u20131134 (2017)","DOI":"10.1109\/CVPR.2017.632"},{"key":"35_CR10","doi-asserted-by":"crossref","unstructured":"Jin, M., Hu, Z., Favaro, P.: Learning to extract flawless slow motion from blurry videos. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8112\u20138121 (2019)","DOI":"10.1109\/CVPR.2019.00830"},{"key":"35_CR11","doi-asserted-by":"crossref","unstructured":"Jin, M., Meishvili, G., Favaro, P.: Learning to extract a video sequence from a single motion-blurred image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6334\u20136342 (2018)","DOI":"10.1109\/CVPR.2018.00663"},{"key":"35_CR12","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401\u20134410 (2019)","DOI":"10.1109\/CVPR.2019.00453"},{"key":"35_CR13","doi-asserted-by":"crossref","unstructured":"Kim, T.H., Lee, K.M., Scholkopf, B., Hirsch, M.: Online video deblurring via dynamic temporal blending network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4038\u20134047 (2017)","DOI":"10.1109\/ICCV.2017.435"},{"key":"35_CR14","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)"},{"key":"35_CR15","first-page":"1033","volume":"22","author":"D Krishnan","year":"2009","unstructured":"Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. Adv. Neural. Inf. Process. Syst. 22, 1033\u20131041 (2009)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"35_CR16","doi-asserted-by":"crossref","unstructured":"Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183\u20138192 (2018)","DOI":"10.1109\/CVPR.2018.00854"},{"key":"35_CR17","doi-asserted-by":"crossref","unstructured":"Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 8878\u20138887 (2019)","DOI":"10.1109\/ICCV.2019.00897"},{"key":"35_CR18","unstructured":"Larsen, A.B.L., S\u00f8nderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558\u20131566. PMLR (2016)"},{"key":"35_CR19","doi-asserted-by":"crossref","unstructured":"Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964\u20131971. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206815"},{"key":"35_CR20","doi-asserted-by":"crossref","unstructured":"Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 13401\u201313412 (2021)","DOI":"10.1109\/ICCV48922.2021.01315"},{"key":"35_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"695","DOI":"10.1007\/978-3-030-58598-3_41","volume-title":"Computer Vision \u2013 ECCV 2020","author":"S Lin","year":"2020","unstructured":"Lin, S., et al.: Learning event-driven video deblurring and interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 695\u2013710. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58598-3_41"},{"key":"35_CR22","doi-asserted-by":"crossref","unstructured":"Nah, S., et al.: Ntire 2019 challenge on video deblurring and super-resolution: dataset and study. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)","DOI":"10.1109\/CVPRW.2019.00251"},{"key":"35_CR23","doi-asserted-by":"crossref","unstructured":"Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883\u20133891 (2017)","DOI":"10.1109\/CVPR.2017.35"},{"key":"35_CR24","doi-asserted-by":"crossref","unstructured":"Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8102\u20138111 (2019)","DOI":"10.1109\/CVPR.2019.00829"},{"key":"35_CR25","doi-asserted-by":"crossref","unstructured":"Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6820\u20136829 (2019)","DOI":"10.1109\/CVPR.2019.00698"},{"key":"35_CR26","doi-asserted-by":"crossref","unstructured":"Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337\u20132346 (2019)","DOI":"10.1109\/CVPR.2019.00244"},{"key":"35_CR27","doi-asserted-by":"crossref","unstructured":"Purohit, K., Shah, A., Rajagopalan, A.: Bringing alive blurred moments. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6830\u20136839 (2019)","DOI":"10.1109\/CVPR.2019.00699"},{"key":"35_CR28","doi-asserted-by":"crossref","unstructured":"Rozumnyi, D., Oswald, M.R., Ferrari, V., Matas, J., Pollefeys, M.: DeFMO: deblurring and shape recovery of fast moving objects. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3456\u20133465 (2021)","DOI":"10.1109\/CVPR46437.2021.00346"},{"key":"35_CR29","doi-asserted-by":"crossref","unstructured":"Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., Gao, Z.: Blurry video frame interpolation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5114\u20135123 (2020)","DOI":"10.1109\/CVPR42600.2020.00516"},{"key":"35_CR30","first-page":"3483","volume":"28","author":"K Sohn","year":"2015","unstructured":"Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Adv. Neural. Inf. Process. Syst. 28, 3483\u20133491 (2015)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"35_CR31","doi-asserted-by":"crossref","unstructured":"Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279\u20131288 (2017)","DOI":"10.1109\/CVPR.2017.33"},{"key":"35_CR32","doi-asserted-by":"crossref","unstructured":"Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174\u20138182 (2018)","DOI":"10.1109\/CVPR.2018.00853"},{"key":"35_CR33","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"402","DOI":"10.1007\/978-3-030-58536-5_24","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Teed","year":"2020","unstructured":"Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402\u2013419. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58536-5_24"},{"key":"35_CR34","doi-asserted-by":"crossref","unstructured":"Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)","DOI":"10.1109\/CVPRW.2019.00247"},{"key":"35_CR35","doi-asserted-by":"crossref","unstructured":"Wieschollek, P., Hirsch, M., Scholkopf, B., Lensch, H.: Learning blind motion deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 231\u2013240 (2017)","DOI":"10.1109\/ICCV.2017.34"},{"key":"35_CR36","doi-asserted-by":"crossref","unstructured":"Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107\u20131114 (2013)","DOI":"10.1109\/CVPR.2013.147"},{"key":"35_CR37","unstructured":"Xue, T., Wu, J., Bouman, K.L., Freeman, W.T.: Visual dynamics: probabilistic future frame synthesis via cross convolutional networks. arXiv preprint arXiv:1607.02586 (2016)"},{"key":"35_CR38","doi-asserted-by":"crossref","unstructured":"Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5978\u20135986 (2019)","DOI":"10.1109\/CVPR.2019.00613"},{"key":"35_CR39","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"300","DOI":"10.1007\/978-3-030-58558-7_18","volume-title":"Computer Vision \u2013 ECCV 2020","author":"J Zhang","year":"2020","unstructured":"Zhang, J., et al.: DTVNet: dynamic time-lapse video generation via single still image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 300\u2013315. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58558-7_18"},{"key":"35_CR40","doi-asserted-by":"crossref","unstructured":"Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586\u2013595 (2018)","DOI":"10.1109\/CVPR.2018.00068"},{"key":"35_CR41","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1007\/978-3-030-58539-6_12","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Zhong","year":"2020","unstructured":"Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural network for video deblurring. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 191\u2013207. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58539-6_12"},{"key":"35_CR42","doi-asserted-by":"crossref","unstructured":"Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 2482\u20132491 (2019)","DOI":"10.1109\/ICCV.2019.00257"},{"key":"35_CR43","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223\u20132232 (2017)","DOI":"10.1109\/ICCV.2017.244"},{"key":"35_CR44","unstructured":"Zhu, J.Y., et al.: Multimodal image-to-image translation by enforcing bi-cycle consistency. In: Advances in Neural Information Processing Systems, pp. 465\u2013476 (2017)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19800-7_35","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T12:20:23Z","timestamp":1667910023000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19800-7_35"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031197994","9783031198007"],"references-count":44,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19800-7_35","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"9 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}