{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T06:14:38Z","timestamp":1744179278592,"version":"3.40.3"},"publisher-location":"Cham","reference-count":91,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031197994"},{"type":"electronic","value":"9783031198007"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19800-7_19","type":"book-chapter","created":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T12:09:38Z","timestamp":1667909378000},"page":"323-343","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["All You Need Is RAW: Defending Against Adversarial Attacks with\u00a0Camera Image Pipelines"],"prefix":"10.1007","author":[{"given":"Yuxuan","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Bo","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Felix","family":"Heide","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,9]]},"reference":[{"key":"19_CR1","unstructured":"Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International Conference on Machine Learning, pp. 274\u2013283. PMLR (2018)"},{"key":"19_CR2","unstructured":"Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. In: International Conference on Machine Learning, pp. 284\u2013293. PMLR (2018)"},{"key":"19_CR3","unstructured":"Bahat, Y., Irani, M., Shakhnarovich, G.: Natural and adversarial error detection using invariance to image transformations. arXiv preprint arXiv:1902.00236 (2019)"},{"key":"19_CR4","doi-asserted-by":"crossref","unstructured":"Borkar, T., Heide, F., Karam, L.: Defending against universal attacks through selective feature regeneration. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 709\u2013719 (2020)","DOI":"10.1109\/CVPR42600.2020.00079"},{"key":"19_CR5","unstructured":"Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In: International Conference on Learning Representations (2018)"},{"key":"19_CR6","doi-asserted-by":"crossref","unstructured":"Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy (2017)","DOI":"10.1109\/SP.2017.49"},{"key":"19_CR7","doi-asserted-by":"crossref","unstructured":"Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks (2017)","DOI":"10.1109\/SP.2017.49"},{"key":"19_CR8","doi-asserted-by":"publisher","unstructured":"Chen, C., Chen, Q., Do, M.N., Koltun, V.: Seeing motion in the dark. In: 2019 IEEE\/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 Oct \u20132 Nov 2019. pp. 3184\u20133193. IEEE (2019). https:\/\/doi.org\/10.1109\/ICCV.2019.00328","DOI":"10.1109\/ICCV.2019.00328"},{"key":"19_CR9","doi-asserted-by":"publisher","unstructured":"Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18\u201322 June 2018, pp. 3291\u20133300. Computer Vision Foundation\/IEEE Computer Society (2018). https:\/\/doi.org\/10.1109\/CVPR.2018.00347,https:\/\/openaccess.thecvf.com\/content_cvpr_2018\/html\/Chen_Learning_to_See_CVPR_2018_paper.html","DOI":"10.1109\/CVPR.2018.00347,"},{"issue":"4","key":"19_CR10","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"LC Chen","year":"2017","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834\u2013848 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"19_CR11","unstructured":"Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017)"},{"key":"19_CR12","doi-asserted-by":"crossref","unstructured":"Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15\u201326 (2017)","DOI":"10.1145\/3128572.3140448"},{"key":"19_CR13","unstructured":"Cheng, M., Le, T., Chen, P.Y., Yi, J., Zhang, H., Hsieh, C.J.: Query-efficient hard-label black-box attack: An optimization-based approach. arXiv preprint arXiv:1807.04457 (2018)"},{"key":"19_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1007\/978-3-030-67070-2_11","volume-title":"Computer Vision \u2013 ECCV 2020 Workshops","author":"L Dai","year":"2020","unstructured":"Dai, L., Liu, X., Li, C., Chen, J.: AWNet: Attentive wavelet network for image ISP. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 185\u2013201. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-67070-2_11"},{"key":"19_CR15","unstructured":"Das, N., Shanbhogue, M., Chen, S.T., Hohman, F., Chen, L., Kounavis, M.E., Chau, D.H.: Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg compression. arXiv preprint arXiv:1705.02900 (2017)"},{"key":"19_CR16","doi-asserted-by":"crossref","unstructured":"Diamond, S., Sitzmann, V., Julca-Aguilar, F., Boyd, S., Wetzstein, G., Heide, F.: Dirty pixels: Towards end-to-end image processing and perception. ACM Trans. Graph. (SIGGRAPH) (2021)","DOI":"10.1145\/3446918"},{"key":"19_CR17","doi-asserted-by":"crossref","unstructured":"Duan, R., Ma, X., Wang, Y., Bailey, J., Qin, A.K., Yang, Y.: Adversarial camouflage: Hiding physical-world attacks with natural styles. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1000\u20131008 (2020)","DOI":"10.1109\/CVPR42600.2020.00108"},{"key":"19_CR18","unstructured":"Dziugaite, G.K., Ghahramani, Z., Roy, D.M.: A study of the effect of jpg compression on adversarial images (2016)"},{"key":"19_CR19","unstructured":"Dziugaite, G.K., Ghahramani, Z., Roy, D.M.: A study of the effect of JPG compression on adversarial images. CoRR abs\/ arXIv: 1608.00853 (2016)"},{"issue":"2","key":"19_CR20","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303\u2013338 (2010)","journal-title":"Int. J. Comput. Vision"},{"key":"19_CR21","doi-asserted-by":"crossref","unstructured":"Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625\u20131634 (2018)","DOI":"10.1109\/CVPR.2018.00175"},{"issue":"6","key":"19_CR22","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1145\/2980179.2982399","volume":"35","author":"M Gharbi","year":"2016","unstructured":"Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. (TOG) 35(6), 191 (2016)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"19_CR23","doi-asserted-by":"crossref","unstructured":"Gong, C., Ren, T., Ye, M., Liu, Q.: Maxup: Lightweight adversarial training with data augmentation improves neural network training. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2474\u20132483 (June 2021)","DOI":"10.1109\/CVPR46437.2021.00250"},{"key":"19_CR24","unstructured":"Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. CoRR abs\/ arXiv: 1412.6572 (2015)"},{"key":"19_CR25","unstructured":"Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015)"},{"key":"19_CR26","unstructured":"Guo, C., Rana, M., Cisse, M., Van Der Maaten, L.: Countering adversarial images using input transformations. In: ICLR (2018)"},{"key":"19_CR27","doi-asserted-by":"crossref","unstructured":"Guo, M., Yang, Y., Xu, R., Liu, Z., Lin, D.: When nas meets robustness: In search of robust architectures against adversarial attacks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 631\u2013640 (2020)","DOI":"10.1109\/CVPR42600.2020.00071"},{"issue":"6","key":"19_CR28","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2980179.2980254","volume":"35","author":"SW Hasinoff","year":"2016","unstructured":"Hasinoff, S.W., Sharlet, D., Geiss, R., Adams, A., Barron, J.T., Kainz, F., Chen, J., Levoy, M.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph. (ToG) 35(6), 1\u201312 (2016)","journal-title":"ACM Trans. Graph. (ToG)"},{"key":"19_CR29","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"19_CR30","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"19_CR31","unstructured":"Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks based on gan. ArXiv abs\/ arXiv: 1702.05983 (2017)"},{"key":"19_CR32","doi-asserted-by":"crossref","unstructured":"Ignatov, A., Gool, L.V., Timofte, R.: Replacing mobile camera isp with a single deep learning model (2020)","DOI":"10.1109\/CVPRW50498.2020.00276"},{"key":"19_CR33","doi-asserted-by":"crossref","unstructured":"Ignatov, A.D., Gool, L.V., Timofte, R.: Replacing mobile camera isp with a single deep learning model. 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2275\u20132285 (2020)","DOI":"10.1109\/CVPRW50498.2020.00276"},{"key":"19_CR34","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (July 2017)","DOI":"10.1109\/CVPR.2017.632"},{"key":"19_CR35","doi-asserted-by":"crossref","unstructured":"Jan, S.T., Messou, J., Lin, Y.C., Huang, J.B., Wang, G.: Connecting the digital and physical world: Improving the robustness of adversarial attacks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 962\u2013969 (2019)","DOI":"10.1609\/aaai.v33i01.3301962"},{"key":"19_CR36","doi-asserted-by":"crossref","unstructured":"Jang, U., Wu, X., Jha, S.: Objective metrics and gradient descent algorithms for adversarial examples in machine learning. In: Proceedings of the 33rd Annual Computer Security Applications Conference, pp. 262\u2013277 (2017)","DOI":"10.1145\/3134600.3134635"},{"key":"19_CR37","doi-asserted-by":"crossref","unstructured":"Jia, X., Wei, X., Cao, X., Foroosh, H.: Comdefend: An efficient image compression model to defend adversarial examples. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6084\u20136092 (2019)","DOI":"10.1109\/CVPR.2019.00624"},{"key":"19_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1007\/978-3-319-46448-0_26","volume-title":"Computer Vision \u2013 ECCV 2016","author":"HC Karaimer","year":"2016","unstructured":"Karaimer, H.C., Brown, M.S.: A software platform for manipulating the camera imaging pipeline. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 429\u2013444. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_26"},{"key":"19_CR39","unstructured":"Kim, H.: Torchattacks: A pytorch repository for adversarial attacks (2021)"},{"key":"19_CR40","unstructured":"Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)"},{"key":"19_CR41","doi-asserted-by":"crossref","unstructured":"Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world (2017)","DOI":"10.1201\/9781351251389-8"},{"key":"19_CR42","unstructured":"Li, Y., Li, L., Wang, L., Zhang, T., Gong, B.: Nattack: Learning the distributions of adversarial examples for an improved black-box attack on deep neural networks. arXiv preprint arXiv:1905.00441 (2019)"},{"key":"19_CR43","doi-asserted-by":"publisher","first-page":"2248","DOI":"10.1109\/TIP.2021.3051486","volume":"30","author":"Z Liang","year":"2021","unstructured":"Liang, Z., Cai, J., Cao, Z., Zhang, L.: Cameranet: A two-stage framework for effective camera isp learning. IEEE Trans. Image Process. 30, 2248\u20132262 (2021). https:\/\/doi.org\/10.1109\/TIP.2021.3051486","journal-title":"IEEE Trans. Image Process."},{"key":"19_CR44","doi-asserted-by":"crossref","unstructured":"Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense against adversarial attacks using high-level representation guided denoiser. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1778\u20131787 (2018)","DOI":"10.1109\/CVPR.2018.00191"},{"key":"19_CR45","doi-asserted-by":"crossref","unstructured":"Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense against adversarial attacks using high-level representation guided denoiser. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778\u20131787 (2018)","DOI":"10.1109\/CVPR.2018.00191"},{"key":"19_CR46","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., et al.: Microsoft coco: Common objects in context (2015)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"19_CR47","doi-asserted-by":"crossref","unstructured":"Liu, Z., Liu, Q., Liu, T., Wang, Y., Wen, W.: Feature Distillation: DNN-oriented JPEG compression against adversarial examples. In: International Joint Conference on Artificial Intelligence (2018)","DOI":"10.1109\/CVPR.2019.00095"},{"key":"19_CR48","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Feature distillation: Dnn-oriented jpeg compression against adversarial examples. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 860\u2013868. IEEE (2019)","DOI":"10.1109\/CVPR.2019.00095"},{"key":"19_CR49","doi-asserted-by":"crossref","unstructured":"Lu, J., Issaranon, T., Forsyth, D.: Safetynet: Detecting and rejecting adversarial examples robustly. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 446\u2013454 (2017)","DOI":"10.1109\/ICCV.2017.56"},{"key":"19_CR50","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)"},{"key":"19_CR51","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks (2019)"},{"key":"19_CR52","doi-asserted-by":"crossref","unstructured":"Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks (2016)","DOI":"10.1109\/CVPR.2016.282"},{"key":"19_CR53","doi-asserted-by":"crossref","unstructured":"Mosleh, A., Sharma, A., Onzon, E., Mannan, F., Robidoux, N., Heide, F.: Hardware-in-the-loop end-to-end optimization of camera image processing pipelines. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)","DOI":"10.1109\/CVPR42600.2020.00755"},{"key":"19_CR54","unstructured":"Nakkiran, P.: Adversarial robustness may be at odds with simplicity. arXiv preprint arXiv:1901.00532 (2019)"},{"key":"19_CR55","doi-asserted-by":"publisher","unstructured":"Narodytska, N., Kasiviswanathan, S.: Simple black-box adversarial attacks on deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1310\u20131318 (2017). https:\/\/doi.org\/10.1109\/CVPRW.2017.172","DOI":"10.1109\/CVPRW.2017.172"},{"key":"19_CR56","unstructured":"Pang, T., Xu, K., Dong, Y., Du, C., Chen, N., Zhu, J.: Rethinking softmax cross-entropy loss for adversarial robustness. In: ICLR (2020)"},{"key":"19_CR57","doi-asserted-by":"publisher","unstructured":"Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS 2017, pp. 506\u2013519. Association for Computing Machinery, New York, NY, USA (2017). https:\/\/doi.org\/10.1145\/3052973.3053009","DOI":"10.1145\/3052973.3053009"},{"key":"19_CR58","doi-asserted-by":"crossref","unstructured":"Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 582\u2013597. IEEE (2016)","DOI":"10.1109\/SP.2016.41"},{"key":"19_CR59","unstructured":"Papernot, N., McDaniel, P.D., Goodfellow, I.J.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. CoRR abs\/ arXiv: 1605.07277 (2016)"},{"key":"19_CR60","doi-asserted-by":"crossref","unstructured":"Phan, B., Mannan, F., Heide, F.: Adversarial imaging pipelines. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 16051\u201316061 (2021)","DOI":"10.1109\/CVPR46437.2021.01579"},{"key":"19_CR61","doi-asserted-by":"crossref","unstructured":"Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4422\u20134431 (2018)","DOI":"10.1109\/CVPR.2018.00465"},{"key":"19_CR62","doi-asserted-by":"crossref","unstructured":"Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Deflecting adversarial attacks with pixel deflection. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2018)","DOI":"10.1109\/CVPR.2018.00894"},{"key":"19_CR63","unstructured":"Rauber, J., Brendel, W., Bethge, M.: Foolbox: A python toolbox to benchmark the robustness of machine learning models (2018)"},{"key":"19_CR64","doi-asserted-by":"crossref","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks (2016)","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"19_CR65","unstructured":"Samangouei, P., Kabkab, M., Chellappa, R.: Defense-gan: Protecting classifiers against adversarial attacks using generative models. In: ICLR (2018)"},{"key":"19_CR66","doi-asserted-by":"publisher","unstructured":"Schwartz, E., Giryes, R., Bronstein, A.M.: Deepisp: Toward learning an end-to-end image processing pipeline, vol. 28(2), pp. 912\u2013923 (Feb 2019). https:\/\/doi.org\/10.1109\/TIP.2018.2872858","DOI":"10.1109\/TIP.2018.2872858"},{"key":"19_CR67","unstructured":"Sen, S., Ravindran, B., Raghunathan, A.: Empir: Ensembles of mixed precision deep networks for increased robustness against adversarial attacks. In: ICLR (2020)"},{"key":"19_CR68","unstructured":"Shafahi, A., et al.: Adversarial training for free! In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 3358\u20133369 (2019)"},{"key":"19_CR69","doi-asserted-by":"crossref","unstructured":"Shi, Y., Wang, S., Han, Y.: Curls & whey: Boosting black-box adversarial attacks. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6512\u20136520 (2019)","DOI":"10.1109\/CVPR.2019.00668"},{"key":"19_CR70","unstructured":"Stutz, D., Hein, M., Schiele, B.: Confidence-calibrated adversarial training: Generalizing to unseen attacks. In: International Conference on Machine Learning, pp. 9155\u20139166. PMLR (2020)"},{"key":"19_CR71","unstructured":"Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)"},{"key":"19_CR72","unstructured":"Szegedy, C., et al.: Intriguing properties of neural networks (2014)"},{"key":"19_CR73","doi-asserted-by":"crossref","unstructured":"Tseng, E., et al.: Differentiable compound optics and processing pipeline optimization for end-to-end camera design. ACM Trans. Graph. (TOG) 40(4) (2021)","DOI":"10.1145\/3446791"},{"key":"19_CR74","doi-asserted-by":"publisher","unstructured":"Tseng, E., et al.: Hyperparameter optimization in black-box image processing using differentiable proxies, vol. 38(4) (Jul 2019). https:\/\/doi.org\/10.1145\/3306346.3322996","DOI":"10.1145\/3306346.3322996"},{"issue":"4","key":"19_CR75","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3306346.3322996","volume":"38","author":"E Tseng","year":"2019","unstructured":"Tseng, E., et al.: Hyperparameter optimization in black-box image processing using differentiable proxies. ACM Trans. Graph. 38(4), 1\u201327 (2019)","journal-title":"ACM Trans. Graph."},{"key":"19_CR76","unstructured":"Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: International Conference on Learning Representations, vol. 2019 (2019)"},{"key":"19_CR77","doi-asserted-by":"crossref","unstructured":"Tu, C.C., et al.: Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 742\u2013749 (2019)","DOI":"10.1609\/aaai.v33i01.3301742"},{"key":"19_CR78","doi-asserted-by":"crossref","unstructured":"Wang, J., Zhang, H.: Bilateral adversarial training: Towards fast training of more robust models against adversarial attacks. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 6629\u20136638 (2019)","DOI":"10.1109\/ICCV.2019.00673"},{"key":"19_CR79","unstructured":"Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: Revisiting adversarial training. In: ICLR (2020)"},{"key":"19_CR80","unstructured":"Wu, Y.H., Yuan, C.H., Wu, S.H.: Adversarial robustness via runtime masking and cleansing. In: International Conference on Machine Learning, pp. 10399\u201310409. PMLR (2020)"},{"key":"19_CR81","unstructured":"Xie, C., Wang, J., Zhang, Z., Ren, Z., Yuille, A.: Mitigating adversarial effects through randomization. arXiv preprint arXiv:1711.01991 (2017)"},{"key":"19_CR82","doi-asserted-by":"crossref","unstructured":"Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection (2017)","DOI":"10.1109\/ICCV.2017.153"},{"key":"19_CR83","doi-asserted-by":"crossref","unstructured":"Xie, C., Wu, Y., Maaten, L.v.d., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 501\u2013509 (2019)","DOI":"10.1109\/CVPR.2019.00059"},{"key":"19_CR84","doi-asserted-by":"publisher","unstructured":"Xu, X., Ma, Y., Sun, W.: Towards real scene super-resolution with raw images. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1723\u20131731 (2019). https:\/\/doi.org\/10.1109\/CVPR.2019.00182","DOI":"10.1109\/CVPR.2019.00182"},{"key":"19_CR85","doi-asserted-by":"crossref","unstructured":"Xu, X., Ma, Y., Sun, W., Yang, M.H.: Exploiting raw images for real-scene super-resolution. arXiv preprint arXiv:2102.01579 (2021)","DOI":"10.1109\/TPAMI.2020.3032476"},{"key":"19_CR86","unstructured":"Yin, X., Kolouri, S., Rohde, G.K.: Gat: Generative adversarial training for adversarial example detection and robust classification. In: International Conference on Learning Representations (2019)"},{"key":"19_CR87","doi-asserted-by":"crossref","unstructured":"Yu, K., Li, Z., Peng, Y., Loy, C.C., Gu, J.: Reconfigisp: Reconfigurable camera image processing pipeline. arXiv: 2109.04760 (2021)","DOI":"10.1109\/ICCV48922.2021.00421"},{"key":"19_CR88","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"649","DOI":"10.1007\/978-3-319-46487-9_40","volume-title":"Computer Vision \u2013 ECCV 2016","author":"R Zhang","year":"2016","unstructured":"Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649\u2013666. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46487-9_40"},{"key":"19_CR89","doi-asserted-by":"crossref","unstructured":"Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3762\u20133770 (2019)","DOI":"10.1109\/CVPR.2019.00388"},{"key":"19_CR90","doi-asserted-by":"crossref","unstructured":"Zheng, H., Zhang, Z., Gu, J., Lee, H., Prakash, A.: Efficient adversarial training with transferable adversarial examples. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1181\u20131190 (2020)","DOI":"10.1109\/CVPR42600.2020.00126"},{"key":"19_CR91","doi-asserted-by":"crossref","unstructured":"Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633\u2013641 (2017)","DOI":"10.1109\/CVPR.2017.544"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19800-7_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T12:14:05Z","timestamp":1667909645000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19800-7_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031197994","9783031198007"],"references-count":91,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19800-7_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"9 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}