{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:47:37Z","timestamp":1732042057475},"publisher-location":"Cham","reference-count":49,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031197772"},{"type":"electronic","value":"9783031197789"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19778-9_42","type":"book-chapter","created":{"date-parts":[[2022,11,2]],"date-time":"2022-11-02T20:28:41Z","timestamp":1667420921000},"page":"729-745","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":41,"title":["Self-supervised Sparse Representation for\u00a0Video Anomaly Detection"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4071-3980","authenticated-orcid":false,"given":"Jhih-Ciang","family":"Wu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7657-6549","authenticated-orcid":false,"given":"He-Yen","family":"Hsieh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7649-7824","authenticated-orcid":false,"given":"Ding-Jie","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6174-2556","authenticated-orcid":false,"given":"Chiou-Shann","family":"Fuh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8366-5213","authenticated-orcid":false,"given":"Tyng-Luh","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,3]]},"reference":[{"issue":"4","key":"42_CR1","doi-asserted-by":"publisher","first-page":"371","DOI":"10.1068\/p010371","volume":"1","author":"HB Barlow","year":"1972","unstructured":"Barlow, H.B.: Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1(4), 371\u2013394 (1972)","journal-title":"Perception"},{"key":"42_CR2","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD - a comprehensive real-world dataset for unsupervised anomaly detection. In: CVPR, pp. 9592\u20139600 (2019)","DOI":"10.1109\/CVPR.2019.00982"},{"key":"42_CR3","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: CVPR, pp. 4183\u20134192 (2020)","DOI":"10.1109\/CVPR42600.2020.00424"},{"key":"42_CR4","doi-asserted-by":"crossref","unstructured":"Cai, R., Zhang, H., Liu, W., Gao, S., Hao, Z.: Appearance-motion memory consistency network for video anomaly detection. In: AAAI, pp. 938\u2013946 (2021)","DOI":"10.1609\/aaai.v35i2.16177"},{"key":"42_CR5","doi-asserted-by":"crossref","unstructured":"Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp. 4724\u20134733 (2017)","DOI":"10.1109\/CVPR.2017.502"},{"key":"42_CR6","doi-asserted-by":"publisher","first-page":"4067","DOI":"10.1109\/TMM.2021.3112814","volume":"24","author":"S Chang","year":"2021","unstructured":"Chang, S., Li, Y., Shen, J.S., Feng, J., Zhou, Z.: Contrastive attention for video anomaly detection. IEEE Trans. Multimedia 24, 4067\u20134076 (2021)","journal-title":"IEEE Trans. Multimedia"},{"key":"42_CR7","doi-asserted-by":"crossref","unstructured":"Chen, C., et al.: Comprehensive regularization in a bi-directional predictive network for video anomaly detection. In: AAAI (2022)","DOI":"10.1609\/aaai.v36i1.19898"},{"key":"42_CR8","doi-asserted-by":"crossref","unstructured":"Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR, pp. 3449\u20133456 (2011)","DOI":"10.1109\/CVPR.2011.5995434"},{"key":"42_CR9","doi-asserted-by":"crossref","unstructured":"Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR, pp. 1933\u20131941 (2016)","DOI":"10.1109\/CVPR.2016.213"},{"key":"42_CR10","doi-asserted-by":"crossref","unstructured":"Feng, J.C., Hong, F.T., Zheng, W.S.: Mist: multiple instance self-training framework for video anomaly detection. In: CVPR, pp. 14009\u201314018 (2021)","DOI":"10.1109\/CVPR46437.2021.01379"},{"key":"42_CR11","doi-asserted-by":"crossref","unstructured":"Georgescu, M.I., Barbalau, A., Ionescu, R.T., Khan, F.S., Popescu, M., Shah, M.: Anomaly detection in video via self-supervised and multi-task learning. In: CVPR, pp. 12742\u201312752 (2021)","DOI":"10.1109\/CVPR46437.2021.01255"},{"key":"42_CR12","doi-asserted-by":"crossref","unstructured":"Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV, pp. 1705\u20131714 (2019)","DOI":"10.1109\/ICCV.2019.00179"},{"key":"42_CR13","doi-asserted-by":"crossref","unstructured":"Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: CVPR, pp. 733\u2013742 (2016)","DOI":"10.1109\/CVPR.2016.86"},{"key":"42_CR14","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"42_CR15","doi-asserted-by":"crossref","unstructured":"Ionescu, R.T., Khan, F.S., Georgescu, M.I., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: CVPR, pp. 7842\u20137851 (2019)","DOI":"10.1109\/CVPR.2019.00803"},{"key":"42_CR16","unstructured":"Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)"},{"issue":"2","key":"42_CR17","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1162\/089976603762552951","volume":"15","author":"K Kreutz-Delgado","year":"2003","unstructured":"Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349\u2013396 (2003)","journal-title":"Neural Comput."},{"key":"42_CR18","doi-asserted-by":"crossref","unstructured":"Li, C.L., Sohn, K., Yoon, J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: CVPR, pp. 9664\u20139674 (2021)","DOI":"10.1109\/CVPR46437.2021.00954"},{"key":"42_CR19","doi-asserted-by":"crossref","unstructured":"Li, S., Liu, F., Jiao, L.: Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection. In: AAAI (2022)","DOI":"10.1609\/aaai.v36i2.20028"},{"key":"42_CR20","doi-asserted-by":"crossref","unstructured":"Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: CVPR, pp. 6536\u20136545 (2018)","DOI":"10.1109\/CVPR.2018.00684"},{"key":"42_CR21","doi-asserted-by":"crossref","unstructured":"Liu, Z., Nie, Y., Long, C., Zhang, Q., Li, G.: A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. In: ICCV, pp. 13588\u201313597 (2021)","DOI":"10.1109\/ICCV48922.2021.01333"},{"key":"42_CR22","doi-asserted-by":"crossref","unstructured":"Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in MATLAB. In: ICCV, pp. 2720\u20132727 (2013)","DOI":"10.1109\/ICCV.2013.338"},{"key":"42_CR23","doi-asserted-by":"crossref","unstructured":"Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked rnn framework. In: ICCV, pp. 341\u2013349 (2017)","DOI":"10.1109\/ICCV.2017.45"},{"key":"42_CR24","doi-asserted-by":"publisher","first-page":"4505","DOI":"10.1109\/TIP.2021.3072863","volume":"30","author":"H Lv","year":"2021","unstructured":"Lv, H., Zhou, C., Cui, Z., Xu, C., Li, Y., Yang, J.: Localizing anomalies from weakly-labeled videos. IEEE Trans. Image Process. 30, 4505\u20134515 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"42_CR25","doi-asserted-by":"crossref","unstructured":"Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ICML, pp. 689\u2013696 (2009)","DOI":"10.1145\/1553374.1553463"},{"key":"42_CR26","doi-asserted-by":"crossref","unstructured":"Pang, G., Yan, C., Shen, C., Hengel, A.V.D., Bai, X.: Self-trained deep ordinal regression for end-to-end video anomaly detection. In: CVPR, pp. 12173\u201312182 (2020)","DOI":"10.1109\/CVPR42600.2020.01219"},{"key":"42_CR27","doi-asserted-by":"crossref","unstructured":"Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: CVPR, pp. 14372\u201314381 (2020)","DOI":"10.1109\/CVPR42600.2020.01438"},{"key":"42_CR28","doi-asserted-by":"crossref","unstructured":"Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV, pp. 5534\u20135542 (2017)","DOI":"10.1109\/ICCV.2017.590"},{"key":"42_CR29","unstructured":"Ruff, L., et al.: Deep one-class classification. In: ICML, pp. 4393\u20134402 (2018)"},{"key":"42_CR30","unstructured":"Samuel, D.J., Cuzzolin, F.: SVD-GAN for real-time unsupervised video anomaly detection. In: BMVC (2021)"},{"key":"42_CR31","unstructured":"Sch\u00f6lkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: NIPS, pp. 582\u2013588 (1999)"},{"key":"42_CR32","unstructured":"Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568\u2013576 (2014)"},{"key":"42_CR33","doi-asserted-by":"crossref","unstructured":"Sohrab, F., Raitoharju, J., Gabbouj, M., Iosifidis, A.: Subspace support vector data description. In: ICPR, pp. 722\u2013727 (2018)","DOI":"10.1109\/ICPR.2018.8545819"},{"key":"42_CR34","doi-asserted-by":"crossref","unstructured":"Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR, pp. 6479\u20136488 (2018)","DOI":"10.1109\/CVPR.2018.00678"},{"key":"42_CR35","doi-asserted-by":"crossref","unstructured":"Sun, C., Jia, Y., Hu, Y., Wu, Y.: Scene-aware context reasoning for unsupervised abnormal event detection in videos. In: ACMMM, pp. 184\u2013192 (2020)","DOI":"10.1145\/3394171.3413887"},{"key":"42_CR36","doi-asserted-by":"crossref","unstructured":"Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In: ICCV, pp. 4975\u20134986 (2021)","DOI":"10.1109\/ICCV48922.2021.00493"},{"key":"42_CR37","doi-asserted-by":"crossref","unstructured":"Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV, pp. 4489\u20134497 (2015)","DOI":"10.1109\/ICCV.2015.510"},{"key":"42_CR38","unstructured":"Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998\u20136008 (2017)"},{"key":"42_CR39","doi-asserted-by":"crossref","unstructured":"Wan, B., Fang, Y., Xia, X., Mei, J.: Weakly supervised video anomaly detection via center-guided discriminative learning. In: ICME, pp. 1\u20136 (2020)","DOI":"10.1109\/ICME46284.2020.9102722"},{"key":"42_CR40","doi-asserted-by":"crossref","unstructured":"Wang, J., Cherian, A.: Gods: generalized one-class discriminative subspaces for anomaly detection. In: ICCV, pp. 8201\u20138211 (2019)","DOI":"10.1109\/ICCV.2019.00829"},{"key":"42_CR41","doi-asserted-by":"crossref","unstructured":"Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Gool, L.V.: Temporal segment networks: towards good practices for deep action recognition. In: ECCV, pp. 20\u201336 (2016)","DOI":"10.1007\/978-3-319-46484-8_2"},{"key":"42_CR42","doi-asserted-by":"crossref","unstructured":"Wang, X., Girshick, R.B., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794\u20137803 (2018)","DOI":"10.1109\/CVPR.2018.00813"},{"issue":"6","key":"42_CR43","doi-asserted-by":"publisher","first-page":"2301","DOI":"10.1109\/TNNLS.2021.3083152","volume":"33","author":"X Wang","year":"2021","unstructured":"Wang, X., et al.: Robust unsupervised video anomaly detection by multipath frame prediction. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2301\u20132312 (2021)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"42_CR44","doi-asserted-by":"crossref","unstructured":"Wang, Z., Zou, Y., Zhang, Z.: Cluster attention contrast for video anomaly detection. In: ACMMM, pp. 2463\u20132471 (2020)","DOI":"10.1145\/3394171.3413529"},{"key":"42_CR45","doi-asserted-by":"crossref","unstructured":"Wu, J.C., Chen, D.J., Fuh, C.S., Liu, T.L.: Learning unsupervised metaformer for anomaly detection. In: ICCV, pp. 4369\u20134378 (2021)","DOI":"10.1109\/ICCV48922.2021.00433"},{"key":"42_CR46","doi-asserted-by":"crossref","unstructured":"Wu, P., et al.: Not only look, but also listen: learning multimodal violence detection under weak supervision. In: ECCV, pp. 322\u2013339 (2020)","DOI":"10.1007\/978-3-030-58577-8_20"},{"key":"42_CR47","doi-asserted-by":"crossref","unstructured":"Xu, H., Das, A., Saenko, K.: R-C3D: region convolutional 3d network for temporal activity detection. In: ICCV, pp. 5794\u20135803 (2017)","DOI":"10.1109\/ICCV.2017.617"},{"key":"42_CR48","doi-asserted-by":"crossref","unstructured":"Yu, G., et al.: Cloze test helps: effective video anomaly detection via learning to complete video events. In: ACMMM, pp. 583\u2013591 (2020)","DOI":"10.1145\/3394171.3413973"},{"key":"42_CR49","doi-asserted-by":"crossref","unstructured":"Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection. In: CVPR, pp. 1237\u20131246 (2019)","DOI":"10.1109\/CVPR.2019.00133"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19778-9_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,2]],"date-time":"2022-11-02T21:02:04Z","timestamp":1667422924000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19778-9_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031197772","9783031197789"],"references-count":49,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19778-9_42","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"3 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}