{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T15:12:00Z","timestamp":1743001920154,"version":"3.40.3"},"publisher-location":"Cham","reference-count":48,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031197680"},{"type":"electronic","value":"9783031197697"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19769-7_8","type":"book-chapter","created":{"date-parts":[[2022,10,22]],"date-time":"2022-10-22T11:40:06Z","timestamp":1666438806000},"page":"123-139","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":34,"title":["Lidar Point Cloud Guided Monocular 3D Object Detection"],"prefix":"10.1007","author":[{"given":"Liang","family":"Peng","sequence":"first","affiliation":[]},{"given":"Fei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zhengxu","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Senbo","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Dan","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Zheng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Haifeng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Deng","family":"Cai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,23]]},"reference":[{"key":"8_CR1","doi-asserted-by":"crossref","unstructured":"Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9287\u20139296 (2019)","DOI":"10.1109\/ICCV.2019.00938"},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Chen, H., Huang, Y., Tian, W., Gao, Z., Xiong, L.: MonoRUn: monocular 3D object detection by reconstruction and uncertainty propagation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10379\u201310388 (2021)","DOI":"10.1109\/CVPR46437.2021.01024"},{"issue":"5","key":"8_CR3","doi-asserted-by":"publisher","first-page":"1259","DOI":"10.1109\/TPAMI.2017.2706685","volume":"40","author":"X Chen","year":"2017","unstructured":"Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3D object proposals using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1259\u20131272 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Chen, Y., Tai, L., Sun, K., Li, M.: MonoPair: Monocular 3D object detection using pairwise spatial relationships. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12093\u201312102 (2020)","DOI":"10.1109\/CVPR42600.2020.01211"},{"key":"8_CR5","doi-asserted-by":"crossref","unstructured":"Chu, X., et al.: Neighbor-vote: improving monocular 3d object detection through neighbor distance voting. arXiv preprint arXiv:2107.02493 (2021)","DOI":"10.1145\/3474085.3475641"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Ding, M., et al.: Learning depth-guided convolutions for monocular 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11672\u201311681 (2020)","DOI":"10.1109\/CVPR42600.2020.01169"},{"key":"8_CR7","unstructured":"Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226\u2013231 (1996)"},{"key":"8_CR8","doi-asserted-by":"crossref","unstructured":"Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354\u20133361. IEEE (2012)","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"8_CR9","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"8_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"8_CR11","doi-asserted-by":"crossref","unstructured":"Kumar, A., Brazil, G., Liu, X.: GrooMeD-NMS: grouped mathematically differentiable NMS for monocular 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8973\u20138983 (2021)","DOI":"10.1109\/CVPR46437.2021.00886"},{"key":"8_CR12","doi-asserted-by":"crossref","unstructured":"Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12697\u201312705 (2019)","DOI":"10.1109\/CVPR.2019.01298"},{"key":"8_CR13","doi-asserted-by":"crossref","unstructured":"Li, P., Zhao, H., Liu, P., Cao, F.: RTM3D: real-time monocular 3D detection from object keypoints for autonomous driving. arXiv preprint arXiv:2001.03343 (2020)","DOI":"10.1007\/978-3-030-58580-8_38"},{"key":"8_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"issue":"2","key":"8_CR15","doi-asserted-by":"publisher","first-page":"919","DOI":"10.1109\/LRA.2021.3052442","volume":"6","author":"Y Liu","year":"2021","unstructured":"Liu, Y., Yixuan, Y., Liu, M.: Ground-aware monocular 3D object detection for autonomous driving. IEEE Robot. Autom. Lett. 6(2), 919\u2013926 (2021)","journal-title":"IEEE Robot. Autom. Lett."},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Liu, Z., Zhou, D., Lu, F., Fang, J., Zhang, L.: Autoshape: real-time shape-aware monocular 3D object detection. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 15641\u201315650 (2021)","DOI":"10.1109\/ICCV48922.2021.01535"},{"key":"8_CR17","doi-asserted-by":"crossref","unstructured":"Lu, Y., et al.: Geometry uncertainty projection network for monocular 3D object detection. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3111\u20133121 (2021)","DOI":"10.1109\/ICCV48922.2021.00310"},{"key":"8_CR18","doi-asserted-by":"crossref","unstructured":"Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W.: Rethinking pseudo-LiDAR representation. arXiv preprint arXiv:2008.04582 (2020)","DOI":"10.1007\/978-3-030-58601-0_19"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6851\u20136860 (2019)","DOI":"10.1109\/ICCV.2019.00695"},{"key":"8_CR20","doi-asserted-by":"crossref","unstructured":"Ma, X., et al.: Delving into localization errors for monocular 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4721\u20134730 (2021)","DOI":"10.1109\/CVPR46437.2021.00469"},{"key":"8_CR21","doi-asserted-by":"crossref","unstructured":"Manhardt, F., Kehl, W., Gaidon, A.: ROI-10D: monocular lifting of 2D detection to 6D pose and metric shape. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2069\u20132078 (2019)","DOI":"10.1109\/CVPR.2019.00217"},{"key":"8_CR22","doi-asserted-by":"crossref","unstructured":"Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for monocular 3D object detection? In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3142\u20133152 (2021)","DOI":"10.1109\/ICCV48922.2021.00313"},{"key":"8_CR23","unstructured":"Peng, L., Liu, F., Yan, S., He, X., Cai, D.: OCM3D: object-centric monocular 3D object detection. arXiv preprint arXiv:2104.06041 (2021)"},{"key":"8_CR24","doi-asserted-by":"crossref","unstructured":"Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3D object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918\u2013927 (2018)","DOI":"10.1109\/CVPR.2018.00102"},{"key":"8_CR25","unstructured":"Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652\u2013660 (2017)"},{"key":"8_CR26","unstructured":"Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)"},{"key":"8_CR27","doi-asserted-by":"crossref","unstructured":"Qin, Z., Wang, J., Lu, Y.: MonoGRNet: a geometric reasoning network for monocular 3D object localization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8851\u20138858 (2019)","DOI":"10.1609\/aaai.v33i01.33018851"},{"key":"8_CR28","doi-asserted-by":"crossref","unstructured":"Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution network for monocular 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8555\u20138564 (2021)","DOI":"10.1109\/CVPR46437.2021.00845"},{"key":"8_CR29","doi-asserted-by":"crossref","unstructured":"Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10529\u201310538 (2020)","DOI":"10.1109\/CVPR42600.2020.01054"},{"key":"8_CR30","doi-asserted-by":"crossref","unstructured":"Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 770\u2013779 (2019)","DOI":"10.1109\/CVPR.2019.00086"},{"key":"8_CR31","doi-asserted-by":"crossref","unstructured":"Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. arXiv preprint arXiv:1907.03670 (2019)","DOI":"10.1109\/TPAMI.2020.2977026"},{"key":"8_CR32","doi-asserted-by":"crossref","unstructured":"Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection in a point cloud. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1711\u20131719 (2020)","DOI":"10.1109\/CVPR42600.2020.00178"},{"key":"8_CR33","doi-asserted-by":"crossref","unstructured":"Shi, X., Ye, Q., Chen, X., Chen, C., Chen, Z., Kim, T.K.: Geometry-based distance decomposition for monocular 3D object detection. arXiv preprint arXiv:2104.03775 (2021)","DOI":"10.1109\/ICCV48922.2021.01489"},{"key":"8_CR34","doi-asserted-by":"crossref","unstructured":"Simonelli, A., Bulo, S.R., Porzi, L., Kontschieder, P., Ricci, E.: Are we missing confidence in pseudo-LiDAR methods for monocular 3D object detection? In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3225\u20133233 (2021)","DOI":"10.1109\/ICCV48922.2021.00321"},{"key":"8_CR35","doi-asserted-by":"crossref","unstructured":"Simonelli, A., Bulo, S.R., Porzi, L., L\u00f3pez-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1991\u20131999 (2019)","DOI":"10.1109\/ICCV.2019.00208"},{"key":"8_CR36","doi-asserted-by":"crossref","unstructured":"Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446\u20132454 (2020)","DOI":"10.1109\/CVPR42600.2020.00252"},{"key":"8_CR37","unstructured":"Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proceedings of IEEE Melecon, vol. 83, p. A10 (1983)"},{"key":"8_CR38","doi-asserted-by":"crossref","unstructured":"Wang, L., et al.: Depth-conditioned dynamic message propagation for monocular 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 454\u2013463 (2021)","DOI":"10.1109\/CVPR46437.2021.00052"},{"key":"8_CR39","unstructured":"Wang, L., Zhang, L., Zhu, Y., Zhang, Z., He, T., Li, M., Xue, X.: Progressive coordinate transforms for monocular 3D object detection. In: Advances in Neural Information Processing Systems, vol. 34 (2021)"},{"key":"8_CR40","doi-asserted-by":"crossref","unstructured":"Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-LiDAR from visual depth estimation: Bridging the gap in 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8445\u20138453 (2019)","DOI":"10.1109\/CVPR.2019.00864"},{"key":"8_CR41","doi-asserted-by":"crossref","unstructured":"Weng, X., Kitani, K.: Monocular 3D object detection with pseudo-LiDAR point cloud. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)","DOI":"10.1109\/ICCVW.2019.00114"},{"key":"8_CR42","doi-asserted-by":"crossref","unstructured":"Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11040\u201311048 (2020)","DOI":"10.1109\/CVPR42600.2020.01105"},{"key":"8_CR43","doi-asserted-by":"crossref","unstructured":"Ye, M., Xu, S., Cao, T.: HVNet: hybrid voxel network for lidar based 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1631\u20131640 (2020)","DOI":"10.1109\/CVPR42600.2020.00170"},{"key":"8_CR44","doi-asserted-by":"crossref","unstructured":"Zakharov, S., Kehl, W., Bhargava, A., Gaidon, A.: Autolabeling 3D objects with differentiable rendering of SDF shape priors. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12224\u201312233 (2020)","DOI":"10.1109\/CVPR42600.2020.01224"},{"key":"8_CR45","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Lu, J., Zhou, J.: Objects are different: flexible monocular 3D object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3289\u20133298 (2021)","DOI":"10.1109\/CVPR46437.2021.00330"},{"key":"8_CR46","doi-asserted-by":"crossref","unstructured":"Zheng, W., Tang, W., Jiang, L., Fu, C.W.: SE-SSD: self-ensembling single-stage object detector from point cloud. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 14494\u201314503 (2021)","DOI":"10.1109\/CVPR46437.2021.01426"},{"key":"8_CR47","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490\u20134499 (2018)","DOI":"10.1109\/CVPR.2018.00472"},{"key":"8_CR48","doi-asserted-by":"crossref","unstructured":"Zhou, Y., He, Y., Zhu, H., Wang, C., Li, H., Jiang, Q.: Monocular 3D object detection: an extrinsic parameter free approach. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7556\u20137566 (2021)","DOI":"10.1109\/CVPR46437.2021.00747"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19769-7_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T13:59:15Z","timestamp":1710338355000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19769-7_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031197680","9783031197697"],"references-count":48,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19769-7_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"23 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}