{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T03:17:15Z","timestamp":1743131835300,"version":"3.40.3"},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031197444"},{"type":"electronic","value":"9783031197451"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19745-1_20","type":"book-chapter","created":{"date-parts":[[2022,12,9]],"date-time":"2022-12-09T06:04:15Z","timestamp":1670565855000},"page":"269-284","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Generation of\u00a0Synthetic Drawing Samples to\u00a0Diagnose Parkinson\u2019s Disease"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6880-537X","authenticated-orcid":false,"given":"Gennaro","family":"Gemito","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2019-2826","authenticated-orcid":false,"given":"Angelo","family":"Marcelli","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2911-9737","authenticated-orcid":false,"given":"Antonio","family":"Parziale","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,10]]},"reference":[{"issue":"3","key":"20_CR1","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/s10032-017-0287-5","volume":"20","author":"U Bhattacharya","year":"2017","unstructured":"Bhattacharya, U., Plamondon, R., Dutta Chowdhury, S., Goyal, P., Parui, S.K.: A sigma-lognormal model-based approach to generating large synthetic online handwriting sample databases. Int. J. Doc. Anal. Recogn. (IJDAR) 20(3), 155\u2013171 (2017). https:\/\/doi.org\/10.1007\/s10032-017-0287-5","journal-title":"Int. J. Doc. Anal. Recogn. (IJDAR)"},{"key":"20_CR2","unstructured":"Bishop, C.: Mixture density networks. Technical report NCRG\/94\/004, Aston University, January 1994. https:\/\/www.microsoft.com\/en-us\/research\/publication\/mixturedensity-networks\/"},{"issue":"3","key":"20_CR3","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1007\/s00221-009-1925-z","volume":"197","author":"MP Broderick","year":"2009","unstructured":"Broderick, M.P., Van Gemmert, A.W., Shill, H.A., Stelmach, G.E.: Hypometria and bradykinesia during drawing movements in individuals with Parkinson\u2019s disease. Exp. Brain Res. 197(3), 223\u2013233 (2009). https:\/\/doi.org\/10.1007\/s00221-009-1925-z","journal-title":"Exp. Brain Res."},{"key":"20_CR4","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1016\/j.patcog.2017.03.019","volume":"68","author":"C Carmona-Duarte","year":"2017","unstructured":"Carmona-Duarte, C., Ferrer, M.A., Parziale, A., Marcelli, A.: Temporal evolution in synthetic handwriting. Pattern Recogn. 68, 233\u2013244 (2017)","journal-title":"Pattern Recogn."},{"issue":"5","key":"20_CR5","doi-asserted-by":"publisher","first-page":"951","DOI":"10.1109\/TPAMI.2016.2560810","volume":"39","author":"M Diaz","year":"2016","unstructured":"Diaz, M., Ferrer, M.A., Eskander, G.S., Sabourin, R.: Generation of duplicated off-line signature images for verification systems. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 951\u2013964 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"20_CR6","unstructured":"Goodfellow, I.J., et al.: Generative adversarial networks (2014)"},{"key":"20_CR7","doi-asserted-by":"publisher","unstructured":"Graves, A.: Generating sequences with recurrent neural networks (2013). https:\/\/doi.org\/10.48550\/ARXIV.1308.0850. https:\/\/arxiv.org\/abs\/1308.0850","DOI":"10.48550\/ARXIV.1308.0850"},{"key":"20_CR8","unstructured":"Ha, D.: Write RNN TensorFlow (2018). https:\/\/github.com\/hardmaru\/write-rnntensorow.git"},{"issue":"3","key":"20_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2886099","volume":"35","author":"TS Haines","year":"2016","unstructured":"Haines, T.S., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM Trans. Graph. (TOG) 35(3), 1\u201318 (2016)","journal-title":"ACM Trans. Graph. (TOG)"},{"issue":"4","key":"20_CR10","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1136\/jnnp.2007.131045","volume":"79","author":"J Jankovic","year":"2008","unstructured":"Jankovic, J.: Parkinson\u2019s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368\u2013376 (2008)","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"20_CR11","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1016\/j.future.2020.11.020","volume":"117","author":"I Kamran","year":"2021","unstructured":"Kamran, I., Naz, S., Razzak, I., Imran, M.: Handwriting dynamics assessment using deep neural network for early identification of Parkinson\u2019s disease. Future Gener. Comput. Syst. 117, 234\u2013244 (2021)","journal-title":"Future Gener. Comput. Syst."},{"key":"20_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1007\/978-3-030-58592-1_17","volume-title":"Computer Vision \u2013 ECCV 2020","author":"L Kang","year":"2020","unstructured":"Kang, L., Riba, P., Wang, Y., Rusi\u00f1ol, M., Forn\u00e9s, A., Villegas, M.: GANwriting: content-conditioned generation of styled handwritten word images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 273\u2013289. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58592-1_17"},{"key":"20_CR13","doi-asserted-by":"crossref","unstructured":"Kumar, K.M., Kandala, H., Reddy, N.S.: Synthesizing and imitating handwriting using deep recurrent neural networks and mixture density networks. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1\u20136. IEEE (2018)","DOI":"10.1109\/ICCCNT.2018.8493843"},{"issue":"S1","key":"20_CR14","doi-asserted-by":"publisher","first-page":"S26","DOI":"10.1002\/mds.870040505","volume":"4","author":"C Marsden","year":"1989","unstructured":"Marsden, C.: Slowness of movement in Parkinson\u2019s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 4(S1), S26\u2013S37 (1989)","journal-title":"Mov. Disord. Off. J. Mov. Disord. Soc."},{"issue":"3","key":"20_CR15","doi-asserted-by":"publisher","first-page":"839","DOI":"10.1007\/s00521-019-04069-0","volume":"32","author":"A Naseer","year":"2020","unstructured":"Naseer, A., Rani, M., Naz, S., Razzak, M.I., Imran, M., Xu, G.: Refining Parkinson\u2019s neurological disorder identification through deep transfer learning. Neural Comput. Appl. 32(3), 839\u2013854 (2020). https:\/\/doi.org\/10.1007\/s00521-019-04069-0","journal-title":"Neural Comput. Appl."},{"key":"20_CR16","doi-asserted-by":"publisher","first-page":"101984","DOI":"10.1016\/j.artmed.2020.101984","volume":"111","author":"A Parziale","year":"2021","unstructured":"Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: performance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)","journal-title":"Artif. Intell. Med."},{"key":"20_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1007\/978-3-031-06427-2_10","volume-title":"Image Analysis and Processing - ICIAP 2022","author":"A Parziale","year":"2022","unstructured":"Parziale, A., Della Cioppa, A., Marcelli, A.: Investigating one-class classifiers to diagnose Alzheimer\u2019s disease from handwriting. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022. LNCS, vol. 13231, pp. 111\u2013123. Springer International Publishing, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-06427-2_10"},{"key":"20_CR18","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1016\/j.cmpb.2016.08.005","volume":"136","author":"CR Pereira","year":"2016","unstructured":"Pereira, C.R., et al.: A new computer vision-based approach to aid the diagnosis of Parkinson\u2019s disease. Comput. Methods Programs Biomed. 136, 79\u201388 (2016)","journal-title":"Comput. Methods Programs Biomed."},{"key":"20_CR19","doi-asserted-by":"crossref","unstructured":"Pereira, C.R., Weber, S.A.T., Hook, C., Rosa, G.H., Papa, J.P.: Deep learning-aided Parkinson\u2019s disease diagnosis from handwritten dynamics. In: Proceedings of the Conference on Graphics, Patterns and Images, pp. 340\u2013346. IEEE (2016)","DOI":"10.1109\/SIBGRAPI.2016.054"},{"key":"20_CR20","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1016\/j.artmed.2018.08.007","volume":"95","author":"CR Pereira","year":"2019","unstructured":"Pereira, C.R., Pereira, D.R., Weber, S.A., Hook, C., de Albuquerque, V.H.C., Papa, J.P.: A survey on computer-assisted Parkinson\u2019s disease diagnosis. Artif. Intell. Med. 95, 48\u201363 (2019)","journal-title":"Artif. Intell. Med."},{"key":"20_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1007\/978-3-030-86337-1_17","volume-title":"Document Analysis and Recognition \u2013 ICDAR 2021","author":"F Pignelli","year":"2021","unstructured":"Pignelli, F., Costa, Y.M.G., Oliveira, L.S., Bertolini, D.: Data augmentation for writer identification using a cognitive inspired model. In: Llad\u00f3s, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 251\u2013266. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86337-1_17"},{"key":"20_CR22","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.humov.2018.04.007","volume":"65","author":"R Senatore","year":"2019","unstructured":"Senatore, R., Marcelli, A.: A paradigm for emulating the early learning stage of handwriting: performance comparison between healthy controls and Parkinson\u2019s disease patients in drawing loop shapes. Hum. Mov. Sci. 65, 89\u2013101 (2019)","journal-title":"Hum. Mov. Sci."},{"issue":"5","key":"20_CR23","doi-asserted-by":"publisher","first-page":"1247","DOI":"10.1093\/brain\/110.5.1247","volume":"110","author":"M Sheridan","year":"1987","unstructured":"Sheridan, M., Flowers, K., Hurrell, J.: Programming and execution of movement in Parkinson\u2019s disease. Brain 110(5), 1247\u20131271 (1987)","journal-title":"Brain"},{"issue":"1","key":"20_CR24","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1007\/BF00253633","volume":"76","author":"GE Stelmach","year":"1989","unstructured":"Stelmach, G.E., Teasdale, N., Phillips, J., Worringham, C.J.: Force production characteristics in Parkinson\u2019s disease. Exp. Brain Res. 76(1), 165\u2013172 (1989). https:\/\/doi.org\/10.1007\/BF00253633","journal-title":"Exp. Brain Res."},{"key":"20_CR25","doi-asserted-by":"publisher","unstructured":"Taleb, C., Likforman-Sulem, L., Mokbel, C., Khachab, M.: Detection of Parkinson\u2019s disease from handwriting using deep learning: a comparative study. Evol. Intell. (2020). https:\/\/doi.org\/10.1007\/s12065-020-00470-0","DOI":"10.1007\/s12065-020-00470-0"},{"key":"20_CR26","doi-asserted-by":"publisher","unstructured":"Teulings, H.L.: Handwriting movement control. In: Heuer, H., Keele, S.W. (eds.) Motor Skills, Handbook of Perception and Action, vol. 2, pp. 561\u2013613. Academic Press (1996). https:\/\/doi.org\/10.1016\/S1874-5822(06)80013-7","DOI":"10.1016\/S1874-5822(06)80013-7"},{"key":"20_CR27","doi-asserted-by":"crossref","unstructured":"Toffoli, S., et al.: A smart ink pen for spiral drawing analysis in patients with Parkinson\u2019s disease. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 6475\u20136478 (2021)","DOI":"10.1109\/EMBC46164.2021.9629681"},{"issue":"5","key":"20_CR28","doi-asserted-by":"publisher","first-page":"609","DOI":"10.1007\/s00702-005-0346-9","volume":"113","author":"O Tucha","year":"2006","unstructured":"Tucha, O., et al.: Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson\u2019s disease. J. Neural Transm. 113(5), 609\u2013623 (2006). https:\/\/doi.org\/10.1007\/s00702-005-0346-9","journal-title":"J. Neural Transm."},{"issue":"11","key":"20_CR29","doi-asserted-by":"publisher","first-page":"1502","DOI":"10.1136\/jnnp.74.11.1502","volume":"74","author":"A Van Gemmert","year":"2003","unstructured":"Van Gemmert, A., Adler, C., Stelmach, G.: Parkinson\u2019s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurg. Psychiatry 74(11), 1502\u20131508 (2003)","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"issue":"21","key":"20_CR30","doi-asserted-by":"publisher","first-page":"4666","DOI":"10.3390\/app9214666","volume":"9","author":"G Vessio","year":"2019","unstructured":"Vessio, G.: Dynamic handwriting analysis for neurodegenerative disease assessment: a literary review. Appl. Sci. 9(21), 4666 (2019)","journal-title":"Appl. Sci."}],"container-title":["Lecture Notes in Computer Science","Intertwining Graphonomics with Human Movements"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19745-1_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,27]],"date-time":"2023-01-27T20:14:02Z","timestamp":1674850442000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19745-1_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031197444","9783031197451"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19745-1_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"10 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IGS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Graphonomics Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Las Palmas de Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 June 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"igs2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/graphonomics.net\/igs2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"88% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Only 26 papers from the 36 accepted were selected to be published in the proceedings","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}