{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:49:36Z","timestamp":1726177776833},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031189159"},{"type":"electronic","value":"9783031189166"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-18916-6_50","type":"book-chapter","created":{"date-parts":[[2022,10,26]],"date-time":"2022-10-26T19:03:53Z","timestamp":1666811033000},"page":"633-645","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["PolyTracker: Progressive Contour Regression for\u00a0Multiple Object Tracking and\u00a0Segmentation"],"prefix":"10.1007","author":[{"given":"Sanjing","family":"Shen","sequence":"first","affiliation":[]},{"given":"Hao","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Wengang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Houqiang","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,27]]},"reference":[{"key":"50_CR1","doi-asserted-by":"crossref","unstructured":"Ahrnbom, M., Nilsson, M.G., Ard\u00f6, H.: Real-time and online segmentation multi-target tracking with track revival re-identification. In: VISIGRAPP, pp. 777\u2013784 (2021)","DOI":"10.5220\/0010190907770784"},{"key":"50_CR2","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: IEEE International Conference on Computer Vision (ICCV), pp. 941\u2013951 (2019)","DOI":"10.1109\/ICCV.2019.00103"},{"issue":"10","key":"50_CR3","doi-asserted-by":"publisher","first-page":"1858","DOI":"10.1109\/TPAMI.2008.113","volume":"30","author":"GD Evangelidis","year":"2008","unstructured":"Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 30(10), 1858\u20131865 (2008)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"50_CR4","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"50_CR5","unstructured":"Hu, A., Kendall, A., Cipolla, R.: Learning a spatio-temporal embedding for video instance segmentation. arXiv preprint arXiv:1912.08969 (2019)"},{"issue":"4","key":"50_CR6","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1007\/BF00133570","volume":"1","author":"M Kass","year":"1988","unstructured":"Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision (IJCV) 1(4), 321\u2013331 (1988)","journal-title":"Int. J. Comput. Vision (IJCV)"},{"key":"50_CR7","doi-asserted-by":"crossref","unstructured":"Kim, C., Fuxin, L., Alotaibi, M., Rehg, J.M.: Discriminative appearance modeling with multi-track pooling for real-time multi-object tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9553\u20139562 (2021)","DOI":"10.1109\/CVPR46437.2021.00943"},{"key":"50_CR8","doi-asserted-by":"crossref","unstructured":"Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S.: Fast interactive object annotation with curve-GCN. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5257\u20135266 (2019)","DOI":"10.1109\/CVPR.2019.00540"},{"key":"50_CR9","doi-asserted-by":"crossref","unstructured":"Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 164\u2013173 (2021)","DOI":"10.1109\/CVPR46437.2021.00023"},{"key":"50_CR10","doi-asserted-by":"crossref","unstructured":"Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8533\u20138542 (2020)","DOI":"10.1109\/CVPR42600.2020.00856"},{"key":"50_CR11","doi-asserted-by":"crossref","unstructured":"Porzi, L., Hofinger, M., Ruiz, I., Serrat, J., Bulo, S.R., Kontschieder, P.: Learning multi-object tracking and segmentation from automatic annotations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6846\u20136855 (2020)","DOI":"10.1109\/CVPR42600.2020.00688"},{"key":"50_CR12","doi-asserted-by":"crossref","unstructured":"Saleh, F., Aliakbarian, S., Rezatofighi, H., Salzmann, M., Gould, S.: Probabilistic tracklet scoring and inpainting for multiple object tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14329\u201314339 (2021)","DOI":"10.1109\/CVPR46437.2021.01410"},{"key":"50_CR13","doi-asserted-by":"crossref","unstructured":"Shuai, B., Berneshawi, A., Li, X., Modolo, D., Tighe, J.: SiamMOT: Siamese multi-object tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12372\u201312382 (2021)","DOI":"10.1109\/CVPR46437.2021.01219"},{"key":"50_CR14","doi-asserted-by":"crossref","unstructured":"Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7942\u20137951 (2019)","DOI":"10.1109\/CVPR.2019.00813"},{"key":"50_CR15","doi-asserted-by":"crossref","unstructured":"Xie, E., et al.: PolarMask: single shot instance segmentation with polar representation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12193\u201312202 (2020)","DOI":"10.1109\/CVPR42600.2020.01221"},{"key":"50_CR16","doi-asserted-by":"crossref","unstructured":"Xie, E., Wang, W., Ding, M., Zhang, R., Luo, P.: PolarMask++: enhanced polar representation for single-shot instance segmentation and beyond. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44, 5385\u20135400 (2021)","DOI":"10.1109\/TPAMI.2021.3080324"},{"key":"50_CR17","doi-asserted-by":"crossref","unstructured":"Xu, Z., Meng, A., Shi, Z., Yang, W., Chen, Z., Huang, L.: Continuous copy-paste for one-stage multi-object tracking and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15323\u201315332 (2021)","DOI":"10.1109\/ICCV48922.2021.01504"},{"key":"50_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1007\/978-3-030-58452-8_16","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Xu","year":"2020","unstructured":"Xu, Z., et al.: Segment as points for efficient online multi-object tracking and segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 264\u2013281. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_16"},{"key":"50_CR19","unstructured":"Xu, Z., et al.: Pointtrack++ for effective online multi-object tracking and segmentation. arXiv preprint arXiv:2007.01549 (2020)"},{"key":"50_CR20","unstructured":"Yang, F., et al.: ReMOTS: self-supervised refining multi-object tracking and segmentation. arXiv preprint arXiv:2007.03200 (2020)"},{"key":"50_CR21","doi-asserted-by":"crossref","unstructured":"Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2403\u20132412 (2018)","DOI":"10.1109\/CVPR.2018.00255"},{"issue":"11","key":"50_CR22","doi-asserted-by":"publisher","first-page":"3069","DOI":"10.1007\/s11263-021-01513-4","volume":"129","author":"Y Zhang","year":"2021","unstructured":"Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vision (IJCV) 129(11), 3069\u20133087 (2021)","journal-title":"Int. J. Comput. Vision (IJCV)"},{"key":"50_CR23","unstructured":"Zhou, X., Wang, D., Kr\u00e4henb\u00fchl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-18916-6_50","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,26]],"date-time":"2022-10-26T19:48:55Z","timestamp":1666813735000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-18916-6_50"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031189159","9783031189166"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-18916-6_50","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"27 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/en.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"microsoft","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"564","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"233","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.03","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.35","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}