{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:48:47Z","timestamp":1726177727266},"publisher-location":"Cham","reference-count":36,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031189128"},{"type":"electronic","value":"9783031189135"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-18913-5_28","type":"book-chapter","created":{"date-parts":[[2022,10,26]],"date-time":"2022-10-26T23:03:53Z","timestamp":1666825433000},"page":"361-371","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Semantic-Aware Non-local Network for Handwritten Mathematical Expression Recognition"],"prefix":"10.1007","author":[{"given":"Xiang-Hao","family":"Liu","sequence":"first","affiliation":[]},{"given":"Da-Han","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xia","family":"Du","sequence":"additional","affiliation":[]},{"given":"Shunzhi","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,27]]},"reference":[{"key":"28_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1007\/978-3-030-59830-3_5","volume-title":"Pattern Recognition and Artificial Intelligence","author":"F He","year":"2020","unstructured":"He, F., Tan, J., Bi, N.: Handwritten mathematical expression recognition: a survey. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, W.-S., Cheriet, F., Suen, C.Y. (eds.) ICPRAI 2020. LNCS, vol. 12068, pp. 55\u201366. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59830-3_5"},{"key":"28_CR2","doi-asserted-by":"crossref","unstructured":"Mouchere, H., et al.: ICFHR 2014 competition on recognition of on-line handwritten mathematical expressions (CROHME 2014). In: International Conference on Frontiers in Handwriting Recognition. IEEE (2014)","DOI":"10.1109\/ICFHR.2014.138"},{"key":"28_CR3","doi-asserted-by":"crossref","unstructured":"Mouch\u00e8re, H., et al.: ICFHR2016 CROHME: competition on recognition of online handwritten mathematical expressions. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE (2016)","DOI":"10.1109\/ICFHR.2016.0116"},{"key":"28_CR4","doi-asserted-by":"crossref","unstructured":"Wang, D.-H., et al.: ICFHR 2020 competition on offline recognition and spotting of handwritten mathematical expressions-OffRaSHME. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE (2020)","DOI":"10.1109\/ICFHR2020.2020.00047"},{"key":"28_CR5","doi-asserted-by":"crossref","unstructured":"Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: towards accurate text recognition in natural images. In: ICCV 2017, pp. 5086\u20135094 (2017)","DOI":"10.1109\/ICCV.2017.543"},{"key":"28_CR6","doi-asserted-by":"crossref","unstructured":"Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: ACL (1), pp. 2978\u20132988 (2019)","DOI":"10.18653\/v1\/P19-1285"},{"key":"28_CR7","doi-asserted-by":"crossref","unstructured":"Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (2016)","DOI":"10.18653\/v1\/D16-1053"},{"key":"28_CR8","doi-asserted-by":"crossref","unstructured":"Gordo, A., et al.: LEWIS: latent embeddings for word images and their semantics. In: IEEE International Conference on Computer Vision. IEEE (2015)","DOI":"10.1109\/ICCV.2015.147"},{"key":"28_CR9","doi-asserted-by":"crossref","unstructured":"Wilkinson, T., Brun, A.: Semantic and verbatim word spotting using deep neural networks. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE (2016)","DOI":"10.1109\/ICFHR.2016.0065"},{"issue":"8","key":"28_CR10","doi-asserted-by":"publisher","first-page":"1469","DOI":"10.1109\/TPAMI.2011.264","volume":"34","author":"Q-F Wang","year":"2011","unstructured":"Wang, Q.-F., Yin, F., Liu, C.-L.: Handwritten Chinese text recognition by integrating multiple contexts. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1469\u20131481 (2011)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"28_CR11","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)","DOI":"10.1109\/CVPR.2018.00813"},{"key":"28_CR12","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1162\/tacl_a_00051","volume":"5","author":"P Bojanowski","year":"2017","unstructured":"Bojanowski, P., et al.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135\u2013146 (2017)","journal-title":"Trans. Assoc. Comput. Linguist."},{"key":"28_CR13","doi-asserted-by":"crossref","unstructured":"Anderson, R.H.: Syntax-directed recognition of hand-printed two-dimensional mathematics. In: Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, pp. 436\u2013459. ACM (1967)","DOI":"10.1016\/B978-0-12-395608-8.50048-7"},{"issue":"8","key":"28_CR14","doi-asserted-by":"publisher","first-page":"1671","DOI":"10.1016\/S0031-3203(00)00102-3","volume":"34","author":"KF Chan","year":"2001","unstructured":"Chan, K.F., Yeung, D.Y.: Error detection, error correction and performance evaluation in on-line mathematical expression recognition. Pattern Recogn. 34(8), 1671\u20131684 (2001)","journal-title":"Pattern Recogn."},{"key":"28_CR15","first-page":"44","volume":"3305","author":"S Lavirotte","year":"2016","unstructured":"Lavirotte, S., Pottier, L.: Mathematical formula recognition using graph grammar. Proc. SPIE Int. Soc. Opt. Eng. 3305, 44\u201352 (2016)","journal-title":"Proc. SPIE Int. Soc. Opt. Eng."},{"key":"28_CR16","unstructured":"Yamamoto, R., et al.: On-line recognition of handwritten mathematical expressions based on stroke-based stochastic context-free grammar. In: Proceedings of International Workshop on Frontiers in Handwriting Recognition, pp. 249\u2013254, October 2006"},{"issue":"2","key":"28_CR17","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1007\/s10032-012-0184-x","volume":"16","author":"S Maclean","year":"2013","unstructured":"Maclean, S., Labahn, G.: A new approach for recognizing handwritten mathematics using relational grammars and fuzzy sets. Int. J. Doc. Anal. Recogn. 16(2), 139\u2013163 (2013)","journal-title":"Int. J. Doc. Anal. Recogn."},{"key":"28_CR18","doi-asserted-by":"crossref","unstructured":"Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. Computer Science (2014)","DOI":"10.3115\/v1\/D14-1179"},{"key":"28_CR19","doi-asserted-by":"crossref","unstructured":"Bahdanau, D., et al.: End-to-end attention-based large vocabulary speech recognition. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016)","DOI":"10.1109\/ICASSP.2016.7472618"},{"key":"28_CR20","doi-asserted-by":"crossref","unstructured":"Zhang, J., et al.: Radical analysis network for zero-shot learning in printed Chinese character recognition. In: 2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE (2018)","DOI":"10.1109\/ICME.2018.8486456"},{"key":"28_CR21","unstructured":"Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. Computer Science, pp. 2048\u20132057 (2015)"},{"key":"28_CR22","doi-asserted-by":"crossref","unstructured":"Zhang, J., Du, J., Dai, L.: A GRU-based encoder-decoder approach with attention for online handwritten mathematical expression recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). IEEE (2018)","DOI":"10.1109\/ICDAR.2017.152"},{"key":"28_CR23","doi-asserted-by":"publisher","first-page":"196","DOI":"10.1016\/j.patcog.2017.06.017","volume":"71","author":"J Zhang","year":"2017","unstructured":"Zhang, J., et al.: Watch, attend and parse: An end-to-end neural network based approach to handwritten mathematical expression recognition. Pattern Recogn. 71, 196\u2013206 (2017)","journal-title":"Pattern Recogn."},{"key":"28_CR24","doi-asserted-by":"crossref","unstructured":"Zhang, J., Du, J., Dai, L.: Multi-scale attention with dense encoder for handwritten mathematical expression recognition. In: 2018 24th International Conference on Pattern Recognition (ICPR) (2018)","DOI":"10.1109\/ICPR.2018.8546031"},{"key":"28_CR25","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)"},{"key":"28_CR26","doi-asserted-by":"crossref","unstructured":"Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"28_CR27","unstructured":"Zhang, J., et al.: A tree-structured decoder for image-to-markup generation. In: International Conference on Machine Learning. PMLR (2020)"},{"key":"28_CR28","doi-asserted-by":"publisher","unstructured":"Wu, J.-W., Yin, F., Zhang, YM., Zhang, X.-Y., Liu, C.-L.: Image-to-markup generation via paired adversarial learning. In: Berlingerio, M., Bonchi, F., G\u00e4rtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS, vol. 11051, pp. 18\u201334. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-10925-7_2","DOI":"10.1007\/978-3-030-10925-7_2"},{"issue":"10","key":"28_CR29","doi-asserted-by":"publisher","first-page":"2386","DOI":"10.1007\/s11263-020-01291-5","volume":"128","author":"J-W Wu","year":"2020","unstructured":"Wu, J.-W., et al.: Handwritten mathematical expression recognition via paired adversarial learning. Int. J. Comput. Vis. 128(10), 2386\u20132401 (2020)","journal-title":"Int. J. Comput. Vis."},{"key":"28_CR30","doi-asserted-by":"crossref","unstructured":"Li, Z., et al.: Improving attention-based handwritten mathematical expression recognition with scale augmentation and drop attention. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE (2020)","DOI":"10.1109\/ICFHR2020.2020.00041"},{"key":"28_CR31","doi-asserted-by":"publisher","unstructured":"Zhao, W., Gao, L., Yan, Z., Peng, S., Du, L., Zhang, Z.: Handwritten mathematical expression recognition with bidirectionally trained transformer. In: Llad\u00f3s, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 570\u2013584. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86331-9_37","DOI":"10.1007\/978-3-030-86331-9_37"},{"key":"28_CR32","doi-asserted-by":"crossref","unstructured":"Truong, T.-N., et al.: Improvement of end-to-end offline handwritten mathematical expression recognition by weakly supervised learning. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE (2020)","DOI":"10.1109\/ICFHR2020.2020.00042"},{"key":"28_CR33","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1016\/j.patrec.2021.12.002","volume":"153","author":"T-N Truong","year":"2022","unstructured":"Truong, T.-N., Nguyen, C.T., Nakagawa, M.: Syntactic data generation for handwritten mathematical expression recognition. Pattern Recogn. Lett. 153, 83\u201391 (2022)","journal-title":"Pattern Recogn. Lett."},{"key":"28_CR34","doi-asserted-by":"crossref","unstructured":"Bian, X., et al.: Handwritten mathematical expression recognition via attention aggregation based bi-directional mutual learning. arXiv e-prints (2021)","DOI":"10.1609\/aaai.v36i1.19885"},{"key":"28_CR35","doi-asserted-by":"crossref","unstructured":"Yuan, Y., et al.: Syntax-aware network for handwritten mathematical expression recognition. arXiv preprint arXiv:2203.01601 (2022)","DOI":"10.1109\/CVPR52688.2022.00451"},{"issue":"2","key":"28_CR36","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1007\/s11390-008-9129-8","volume":"23","author":"Y-L Liu","year":"2008","unstructured":"Liu, Y.-L., et al.: A robust and fast non-local means algorithm for image denoising. J. Comput. Sci. Technol. 23(2), 270\u2013279 (2008)","journal-title":"J. Comput. Sci. Technol."}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-18913-5_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,26]],"date-time":"2022-10-26T23:24:32Z","timestamp":1666826672000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-18913-5_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031189128","9783031189135"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-18913-5_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"27 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/en.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"microsoft","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"564","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"233","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.03","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.35","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}