{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:48:31Z","timestamp":1726177711535},"publisher-location":"Cham","reference-count":30,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031189098"},{"type":"electronic","value":"9783031189104"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-18910-4_52","type":"book-chapter","created":{"date-parts":[[2022,10,26]],"date-time":"2022-10-26T23:03:53Z","timestamp":1666825433000},"page":"655-667","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Exploiting Robust Memory Features for\u00a0Unsupervised Reidentification"],"prefix":"10.1007","author":[{"given":"Jiawei","family":"Lian","sequence":"first","affiliation":[]},{"given":"Da-Han","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xia","family":"Du","sequence":"additional","affiliation":[]},{"given":"Yun","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Shunzhi","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,27]]},"reference":[{"key":"52_CR1","doi-asserted-by":"crossref","unstructured":"Chen, H., Lagadec, B., Bremond, F.: Ice: inter-instance contrastive encoding for unsupervised person re-identification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 14960\u201314969 (2021)","DOI":"10.1109\/ICCV48922.2021.01469"},{"key":"52_CR2","doi-asserted-by":"crossref","unstructured":"Chen, H., Wang, Y., Lagadec, B., Dantcheva, A., Bremond, F.: Joint generative and contrastive learning for unsupervised person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2004\u20132013 (2021)","DOI":"10.1109\/CVPR46437.2021.00204"},{"key":"52_CR3","doi-asserted-by":"crossref","unstructured":"Chu, R., Sun, Y., Li, Y., Liu, Z., Wei, Y.: Vehicle re-identification with viewpoint-aware metric learning. In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV) (2019)","DOI":"10.1109\/ICCV.2019.00837"},{"key":"52_CR4","unstructured":"Dai, Z., Wang, G., Zhu, S., Yuan, W., Tan, P.: Cluster contrast for unsupervised person re-identification. arxiv 2021. arXiv preprint arXiv:2103.11568 (2021)"},{"key":"52_CR5","unstructured":"Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226\u2013231 (1996)"},{"key":"52_CR6","doi-asserted-by":"crossref","unstructured":"Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM), 14(4), 1\u201318 (2018)","DOI":"10.1145\/3243316"},{"key":"52_CR7","unstructured":"Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. arXiv preprint arXiv:2001.01526 (2020)"},{"key":"52_CR8","first-page":"11309","volume":"33","author":"Y Ge","year":"2020","unstructured":"Ge, Y., Zhu, F., Chen, D., Zhao, R., et al.: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id. Adv. Neural. Inf. Process. Syst. 33, 11309\u201311321 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"52_CR9","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"52_CR10","doi-asserted-by":"publisher","first-page":"2991","DOI":"10.1109\/TITS.2020.3027578","volume":"23","author":"Y Huang","year":"2020","unstructured":"Huang, Y., et al.: Dual domain multi-task model for vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 23, 2991\u20132999 (2020)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"52_CR11","unstructured":"Jia, D., Wei, D., Socher, R., Li, L.J., Kai, L., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: Proceedings of IEEE Computer Vision Pattern Recognition, pp. 248\u2013255 (2009)"},{"key":"52_CR12","doi-asserted-by":"crossref","unstructured":"Khorramshahi, P., Kumar, A., Peri, N., Rambhatla, S.S., Chen, J.-C., Chellappa, R.: A dual-path model with adaptive attention for vehicle re-identification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), October 2019","DOI":"10.1109\/ICCV.2019.00623"},{"key":"52_CR13","unstructured":"Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)"},{"key":"52_CR14","doi-asserted-by":"crossref","unstructured":"Y. Lin, X. Dong, L. Zheng, Y. Yan, and Y. Yang. A bottom-up clustering approach to unsupervised person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8738\u20138745 (2019)","DOI":"10.1609\/aaai.v33i01.33018738"},{"key":"52_CR15","doi-asserted-by":"crossref","unstructured":"Lin, Y., Xie, L., Wu, Y., Yan, C., Tian, Q.: Unsupervised person re-identification via softened similarity learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3390\u20133399 (2020)","DOI":"10.1109\/CVPR42600.2020.00345"},{"key":"52_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"869","DOI":"10.1007\/978-3-319-46475-6_53","volume-title":"Computer Vision \u2013 ECCV 2016","author":"X Liu","year":"2016","unstructured":"Liu, X., Liu, W., Mei, T., Ma, H.: A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 869\u2013884. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_53"},{"key":"52_CR17","doi-asserted-by":"crossref","unstructured":"Liu, X., Liu, W., Zheng, J., Yan, C., Mei, T.: Beyond the parts: learning multi-view cross-part correlation for vehicle re-identification. In: MM 2020: The 28th ACM International Conference on Multimedia (2020)","DOI":"10.1145\/3394171.3413578"},{"key":"52_CR18","unstructured":"MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281\u2013297 (1967)"},{"key":"52_CR19","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2019.107173","volume":"102","author":"L Song","year":"2020","unstructured":"Song, L., et al.: Unsupervised domain adaptive re-identification: theory and practice. Pattern Recogn. 102, 107173 (2020)","journal-title":"Pattern Recogn."},{"key":"52_CR20","doi-asserted-by":"crossref","unstructured":"Wang, D., Zhang, S.: Unsupervised person re-identification via multi-label classification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10981\u201310990 (2020)","DOI":"10.1109\/CVPR42600.2020.01099"},{"key":"52_CR21","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1016\/j.neucom.2020.06.148","volume":"438","author":"H Wang","year":"2021","unstructured":"Wang, H., Peng, J., Jiang, G., Xu, F., Fu, X.: Discriminative feature and dictionary learning with part-aware model for vehicle re-identification. Neurocomputing 438, 55\u201362 (2021)","journal-title":"Neurocomputing"},{"key":"52_CR22","doi-asserted-by":"crossref","unstructured":"Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)","DOI":"10.1109\/CVPR.2019.00516"},{"key":"52_CR23","doi-asserted-by":"crossref","unstructured":"Wang, Z., et al.: Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017","DOI":"10.1109\/ICCV.2017.49"},{"key":"52_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1007\/978-3-030-58621-8_5","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Wang","year":"2020","unstructured":"Wang, Z., et al.: CycAs: self-supervised cycle association for learning re-identifiable descriptions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 72\u201388. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58621-8_5"},{"key":"52_CR25","doi-asserted-by":"crossref","unstructured":"Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 79\u201388 (2018)","DOI":"10.1109\/CVPR.2018.00016"},{"key":"52_CR26","doi-asserted-by":"crossref","unstructured":"Yu, J., Oh, H.: Unsupervised vehicle re-identification via self-supervised metric learning using feature dictionary. In: 2021 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3806\u20133813. IEEE (2021)","DOI":"10.1109\/IROS51168.2021.9636545"},{"key":"52_CR27","doi-asserted-by":"publisher","first-page":"11422","DOI":"10.1109\/TITS.2021.3103961","volume":"23","author":"A Zheng","year":"2021","unstructured":"Zheng, A., Sun, X., Li, C., Tang, J.: Aware progressive clustering for unsupervised vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 23, 11422\u201311435 (2021)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"52_CR28","doi-asserted-by":"crossref","unstructured":"Zheng, K., Liu, W., He, L., Mei, T., Luo, J., Zha, Z.-J.: Group-aware label transfer for domain adaptive person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5310\u20135319 (2021)","DOI":"10.1109\/CVPR46437.2021.00527"},{"key":"52_CR29","doi-asserted-by":"crossref","unstructured":"Zheng, L., Shen, L., Lu, T., Wang, S., Qi, T.: Scalable person re-identification: a benchmark. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015)","DOI":"10.1109\/ICCV.2015.133"},{"key":"52_CR30","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)","DOI":"10.1609\/aaai.v34i07.7000"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-18910-4_52","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,26]],"date-time":"2022-10-26T23:38:28Z","timestamp":1666827508000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-18910-4_52"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031189098","9783031189104"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-18910-4_52","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"27 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/en.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"microsoft","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"564","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"233","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.03","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.35","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}