{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:23:02Z","timestamp":1740100982601,"version":"3.37.3"},"publisher-location":"Cham","reference-count":16,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031178009"},{"type":"electronic","value":"9783031178016"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-17801-6_6","type":"book-chapter","created":{"date-parts":[[2022,9,29]],"date-time":"2022-09-29T21:03:54Z","timestamp":1664485434000},"page":"57-66","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["An Evidential Neural Network Model for\u00a0Regression Based on\u00a0Random Fuzzy Numbers"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0660-5436","authenticated-orcid":false,"given":"Thierry","family":"Den\u0153ux","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,30]]},"reference":[{"key":"6_CR1","unstructured":"Cella, L., Martin, R.: Valid inferential models for prediction in supervised learning problems. Researchers. One (2021). https:\/\/researchers.one\/articles\/21.12.00002v2"},{"issue":"1","key":"6_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.fss.2010.10.005","volume":"165","author":"I Couso","year":"2011","unstructured":"Couso, I., S\u00e1nchez, L.: Upper and lower probabilities induced by a fuzzy random variable. Fuzzy Sets Syst. 165(1), 1\u201323 (2011)","journal-title":"Fuzzy Sets Syst."},{"key":"6_CR3","doi-asserted-by":"crossref","unstructured":"Den\u0153ux, T.: A $$k$$-nearest neighbor classification rule based on dempster-shafer theory. IEEE Trans. Syst. Man Cybern. 25(05), 804\u2013813 (1995)","DOI":"10.1109\/21.376493"},{"key":"6_CR4","doi-asserted-by":"crossref","unstructured":"Den\u0153ux, T.: Function approximation in the framework of evidence theory: a connectionist approach. In: Proceedings of the 1997 International Conference on Neural Networks (ICNN 1997), vol. 1, pp. 199\u2013203, Houston, June 1997 . IEEE (1997)","DOI":"10.1109\/ICNN.1997.611664"},{"issue":"2","key":"6_CR5","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1109\/3468.833094","volume":"30","author":"T Den\u0153ux","year":"2000","unstructured":"Den\u0153ux, T.: A neural network classifier based on dempster-shafer theory. IEEE Trans. Syst. Man Cybern. A 30(2), 131\u2013150 (2000)","journal-title":"IEEE Trans. Syst. Man Cybern. A"},{"key":"6_CR6","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/j.fss.2020.12.004","volume":"424","author":"T Den\u0153ux","year":"2021","unstructured":"Den\u0153ux, T.: Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence. Fuzzy Sets Syst. 424, 63\u201391 (2021)","journal-title":"Fuzzy Sets Syst."},{"key":"6_CR7","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/978-3-030-06164-7_3","volume-title":"A Guided Tour of Artificial Intelligence Research","author":"T Den\u0153ux","year":"2020","unstructured":"Den\u0153ux, T., Dubois, D., Prade, H.: Representations of uncertainty in artificial intelligence: probability and possibility. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, pp. 69\u2013117. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-06164-7_3"},{"key":"6_CR8","doi-asserted-by":"publisher","unstructured":"Den\u0153ux, T.: Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. Fuzzy Sets Syst. (2022). https:\/\/doi.org\/10.1016\/j.fss.2022.06.004","DOI":"10.1016\/j.fss.2022.06.004"},{"key":"6_CR9","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.ijar.2022.06.007","volume":"149","author":"L Huang","year":"2022","unstructured":"Huang, L., Ruan, S., Decazes, P., Denoeux, T.: Lymphoma segmentation from 3D PET-CT images using a deep evidential network. Int. J. Approx. Reason. 149, 39\u201360 (2022)","journal-title":"Int. J. Approx. Reason."},{"key":"6_CR10","unstructured":"Kuhn, M.: Caret: classification and regression training (2021). R package version 6.0-90. https:\/\/CRAN.R-project.org\/package=caret"},{"key":"6_CR11","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1016\/0022-247X(78)90161-0","volume":"65","author":"HT Nguyen","year":"1978","unstructured":"Nguyen, H.T.: On random sets and belief functions. J. Math. Anal. Appl. 65, 531\u2013542 (1978)","journal-title":"J. Math. Anal. Appl."},{"key":"6_CR12","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1007\/3-540-48747-6_31","volume-title":"Symbolic and Quantitative Approaches to Reasoning and Uncertainty","author":"S Petit-Renaud","year":"1999","unstructured":"Petit-Renaud, S., Den\u0153ux, T.: Handling different forms of uncertainty in regression analysis: a fuzzy belief structure approach. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 340\u2013351. Springer, Heidelberg (1999). https:\/\/doi.org\/10.1007\/3-540-48747-6_31"},{"issue":"1","key":"6_CR13","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S0888-613X(03)00056-2","volume":"35","author":"S Petit-Renaud","year":"2004","unstructured":"Petit-Renaud, S., Den\u0153ux, T.: Nonparametric regression analysis of uncertain and imprecise data using belief functions. Int. J. Approximate Reasoning 35(1), 1\u201328 (2004)","journal-title":"Int. J. Approximate Reasoning"},{"key":"6_CR14","doi-asserted-by":"publisher","DOI":"10.1515\/9780691214696","volume-title":"A Mathematical Theory of Evidence","author":"G Shafer","year":"1976","unstructured":"Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)"},{"key":"6_CR15","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1016\/j.neucom.2021.03.066","volume":"450","author":"Z Tong","year":"2021","unstructured":"Tong, Z., Xu, P., Den\u0153ux, T.: An evidential classifier based on dempster-shafer theory and deep learning. Neurocomputing 450, 275\u2013293 (2021)","journal-title":"Neurocomputing"},{"key":"6_CR16","doi-asserted-by":"publisher","first-page":"6376","DOI":"10.1007\/s10489-021-02327-0","volume":"51","author":"Z Tong","year":"2021","unstructured":"Tong, Z., Xu, P., Den\u0153ux, T.: Evidential fully convolutional network for semantic segmentation. Appl. Intell. 51, 6376\u20136399 (2021)","journal-title":"Appl. Intell."}],"container-title":["Lecture Notes in Computer Science","Belief Functions: Theory and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-17801-6_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T23:32:01Z","timestamp":1728084721000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-17801-6_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031178009","9783031178016"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-17801-6_6","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"30 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BELIEF","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Belief Functions","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Paris","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"belief2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/hebergement.universite-paris-saclay.fr\/belief2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"29","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"94% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.68","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.43","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}