{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:22:17Z","timestamp":1726176137633},"publisher-location":"Cham","reference-count":26,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031176173"},{"type":"electronic","value":"9783031176180"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-17618-0_2","type":"book-chapter","created":{"date-parts":[[2022,9,30]],"date-time":"2022-09-30T23:50:31Z","timestamp":1664581831000},"page":"18-35","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Towards a\u00a0Dynamic Model for\u00a0the\u00a0Prediction of\u00a0Emotion Intensity from\u00a0Peripheral Physiological Signals"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7200-492X","authenticated-orcid":false,"given":"Isabel","family":"Barradas","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5406-4144","authenticated-orcid":false,"given":"Reinhard","family":"Tschiesner","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2896-9011","authenticated-orcid":false,"given":"Angelika","family":"Peer","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,2]]},"reference":[{"key":"2_CR1","doi-asserted-by":"crossref","unstructured":"Alazrai, R., Lee, C.G.: An narx-based approach for human emotion identification. In: 2012 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 4571\u20134576. IEEE (2012)","DOI":"10.1109\/IROS.2012.6385544"},{"issue":"1","key":"2_CR2","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/0005-7916(94)90063-9","volume":"25","author":"MM Bradley","year":"1994","unstructured":"Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Therapy Exp. Psychiat. 25(1), 49\u201359 (1994)","journal-title":"J. Behav. Therapy Exp. Psychiat."},{"key":"2_CR3","doi-asserted-by":"crossref","unstructured":"Brave, S., Nass, C.: Emotion in human-computer interaction. In: The Human-Computer Interaction Handbook, pp. 103\u2013118. CRC Press (2007)","DOI":"10.1201\/9781410615862-13"},{"key":"2_CR4","doi-asserted-by":"crossref","unstructured":"Chang, C.Y., Chang, C.W., Lin, Y.M.: Application of support vector machine for emotion classification. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing, pp. 249\u2013252. IEEE (2012)","DOI":"10.1109\/ICGEC.2012.66"},{"key":"2_CR5","unstructured":"Derogatis, L.R.: Symptom checklist-90-revised, brief symptom inventory, and bsi-18. In: Handbook of Psychological Assessment in Primary Care Settings (2017)"},{"issue":"1","key":"2_CR6","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1080\/02699931.2014.896783","volume":"29","author":"J Heylen","year":"2015","unstructured":"Heylen, J., Verduyn, P., Van Mechelen, I., Ceulemans, E.: Variability in anger intensity profiles: structure and predictive basis. Cognit. Emotion 29(1), 168\u2013177 (2015)","journal-title":"Cognit. Emotion"},{"key":"2_CR7","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1016\/j.cogsys.2018.01.004","volume":"49","author":"R Jenke","year":"2018","unstructured":"Jenke, R., Peer, A.: A cognitive architecture for modeling emotion dynamics: intensity estimation from physiological signals. Cognit. Syst. Res. 49, 128\u2013141 (2018)","journal-title":"Cognit. Syst. Res."},{"key":"2_CR8","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.copsyc.2017.06.004","volume":"17","author":"P Kuppens","year":"2017","unstructured":"Kuppens, P., Verduyn, P.: Emotion dynamics. Curr. Opin. Psychol. 17, 22\u201326 (2017)","journal-title":"Curr. Opin. Psychol."},{"key":"2_CR9","unstructured":"Lang, P.J.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report (2005)"},{"issue":"S1","key":"2_CR10","doi-asserted-by":"publisher","first-page":"509","DOI":"10.3233\/THC-174836","volume":"26","author":"M Li","year":"2018","unstructured":"Li, M., Xu, H., Liu, X., Lu, S.: Emotion recognition from multichannel EEG signals using k-nearest neighbor classification. Technol. Health Care 26(S1), 509\u2013519 (2018)","journal-title":"Technol. Health Care"},{"key":"2_CR11","doi-asserted-by":"publisher","unstructured":"Lin, W., Li, C., Sun, S.: Deep convolutional neural network for emotion recognition using EEG and peripheral physiological signal. In: Zhao, Y., Kong, X., Taubman, D. (eds.) ICIG 2017. LNCS, vol. 10667, pp. 385\u2013394. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-71589-6_33","DOI":"10.1007\/978-3-319-71589-6_33"},{"issue":"5","key":"2_CR12","doi-asserted-by":"publisher","first-page":"1710","DOI":"10.1109\/TCBB.2020.3018137","volume":"18","author":"S Liu","year":"2020","unstructured":"Liu, S., Wang, X., Zhao, L., Zhao, J., Xin, Q., Wang, S.H.: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network. IEEE\/ACM Trans. Comput. Biol. Bioinf. 18(5), 1710\u20131721 (2020)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinf."},{"issue":"1","key":"2_CR13","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.arcontrol.2009.12.001","volume":"34","author":"L Ljung","year":"2010","unstructured":"Ljung, L.: Perspectives on system identification. Annu. Rev. Control 34(1), 1\u201312 (2010)","journal-title":"Annu. Rev. Control"},{"key":"2_CR14","doi-asserted-by":"crossref","unstructured":"Mithbavkar, S.A., Shah, M.S.: Recognition of emotion through facial expressions using EMG signal. In: 2019 International Conference on Nascent Technologies in Engineering (ICNTE), pp. 1\u20136. IEEE (2019)","DOI":"10.1109\/ICNTE44896.2019.8945843"},{"issue":"2","key":"2_CR15","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1177\/1754073912468165","volume":"5","author":"A Moors","year":"2013","unstructured":"Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal theories of emotion: state of the art and future development. Emotion Rev. 5(2), 119\u2013124 (2013)","journal-title":"Emotion Rev."},{"key":"2_CR16","doi-asserted-by":"crossref","unstructured":"Sacharin, V., Schlegel, K., Scherer, K.R.: Geneva emotion wheel rating study (2012)","DOI":"10.1037\/t36935-000"},{"key":"2_CR17","doi-asserted-by":"publisher","unstructured":"Sammut, C., Webb, G.I. (eds.): Leave-One-Out Cross-Validation, pp. 600\u2013601. Springer, Boston (2010). https:\/\/doi.org\/10.1007\/978-0-387-30164-8_469","DOI":"10.1007\/978-0-387-30164-8_469"},{"issue":"7","key":"2_CR18","doi-asserted-by":"publisher","first-page":"1307","DOI":"10.1080\/02699930902928969","volume":"23","author":"KR Scherer","year":"2009","unstructured":"Scherer, K.R.: The dynamic architecture of emotion: evidence for the component process model. Cognit. Emotion 23(7), 1307\u20131351 (2009)","journal-title":"Cognit. Emotion"},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Scherer, K.R., Schorr, A., Johnstone, T.: Appraisal Processes in Emotion: Theory, Methods, Research. Oxford University Press (2001)","DOI":"10.1093\/oso\/9780195130072.001.0001"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Schneegans, S., Sch\u00f6ner, G.: Dynamic field theory as a framework for understanding embodied cognition. In: Handbook of Cognitive Science, pp. 241\u2013271 (2008)","DOI":"10.1016\/B978-0-08-046616-3.00013-X"},{"key":"2_CR21","doi-asserted-by":"crossref","unstructured":"Shu, L., et al.: A review of emotion recognition using physiological signals. Sensors 18(7), 2074 (2018)","DOI":"10.3390\/s18072074"},{"issue":"4","key":"2_CR22","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1080\/02699939408408945","volume":"8","author":"J Sonnemans","year":"1994","unstructured":"Sonnemans, J., Frijda, N.H.: The structure of subjective emotional intensity. Cognit. Emotion 8(4), 329\u2013350 (1994)","journal-title":"Cognit. Emotion"},{"key":"2_CR23","doi-asserted-by":"crossref","unstructured":"Sprent, P., Smeeton, N.C.: Applied Nonparametric Statistical Methods. CRC Press (2016)","DOI":"10.1201\/b15842"},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Torres-Valencia, C.A., Garcia-Arias, H.F., Lopez, M.A.A., Orozco-Guti\u00e9rrez, A.A.: Comparative analysis of physiological signals and electroencephalogram (EEG) for multimodal emotion recognition using generative models. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, pp. 1\u20135. IEEE (2014)","DOI":"10.1109\/STSIVA.2014.7010181"},{"issue":"2","key":"2_CR25","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1109\/T-AFFC.2011.30","volume":"3","author":"G Valenza","year":"2011","unstructured":"Valenza, G., Lanata, A., Scilingo, E.P.: The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3(2), 237\u2013249 (2011)","journal-title":"IEEE Trans. Affect. Comput."},{"issue":"7","key":"2_CR26","doi-asserted-by":"publisher","first-page":"1427","DOI":"10.1080\/02699930902949031","volume":"23","author":"P Verduyn","year":"2009","unstructured":"Verduyn, P., Van Mechelen, I., Tuerlinckx, F., Meers, K., Van Coillie, H.: Intensity profiles of emotional experience over time. Cognit. Emotion 23(7), 1427\u20131443 (2009)","journal-title":"Cognit. Emotion"}],"container-title":["Lecture Notes in Computer Science","HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-17618-0_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,28]],"date-time":"2023-11-28T03:10:57Z","timestamp":1701141057000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-17618-0_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031176173","9783031176180"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-17618-0_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"2 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HCII","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Human-Computer Interaction","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hcii2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2022.hci.international\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}